Greater Egypt Regional Planning AND DEVELOPMENT COMMISSION
 SAFETY StUDY

JUNE 30, 2021

GREATER EGYPT REGIONAL PLANNING
AND DEVELOPMENT COMMISSION
3000 WEST DEYOUNG STREET
SUITE 800 B-3,
MARION, ILLINOIS 62959

PREPARED BY:
CRAWFORD, MURPHY \& TILLY, INC. 2750 WEST WASHINGTON STREET SPRINGFIELD, IL 62702

CMT

TABLE OF CONTENTS

TABLE OF CONTENTS i
APPENDICES ii
INTRODUCTION 1
FIGURE 1: GREATER EGYPT STUDY AREA 1
STUDY AREA 1
HIGHWAY SAFETY DATA 1
HIGHWAY SAFETY ANALYSIS 2
FIGURE 2: CRASH DATA 2014-2018 3
FIGURE 3: CRASH FREQUENCY AND SEVERITY BY ROUTE TYPE 4
FIGURE 4: CRASH TYPE BY ROADWAY TYPE 4
FIGURE 5: COUNTY ROAD CRASH TYPE AND SEVERITY 5
FIGURE 6: CRASH TYPE BY COUNTY 5
FIGURE 7: CRASH SEVERITY BY COUNTY 6
FIGURE 8: CRASH FREQUENCY AND TYPE BY TIME OF DAY 6
SITE SELECTION METHODOLOGY 7
EQUATION 1: EPDO CRASH CALCULATION 7
FIGURE 9: 2019 DATA COMPARION (3/17/20) 7
HSIP PRIORITY LISTING 8
TABLE 1: PRIORITY HSIP LOCATIONS (PERRY COUNTY) 10
TABLE 2: PRIORITY HSIP LOCATIONS (JACKSON COUNTY) 11
TABLE 3: PRIORITY HSIP LOCATIONS (JEFFERSON COUNTY) 12
TABLE 4: PRIORITY HSIP LOCATIONS (FRANKLIN COUNTY) 13
RAILROAD CRASH DATA 14
RAIL CRASH ANALYSIS 14
FIGURE 10: AT-GRADE RAIL CROSSINGS WITHIN STUDY AREA (COUNTY JURISDICTION) 15
FIGURE 11: RAIL CRASH FREQUENCY \& AVG. CRASH PREDICTION BY COUNTY 16
FIGURE 12: AVERAGE ILLINOIS HAZARD INDEX RATING BY COUNTY 16
SITE SELECTION METHODOLOGY 17
FINAL PRIORITY LISTING 17
TABLE 5: TOP PRIORITIZED CROSSINGS \& ICC GCPF FUNDING SUBMITTALS 17
FIGURE 13: LOCATION OF HIGHEST PRIORITY CROSSINGS 18
TABLE 6: RAIL CROSSING PRIORITIES (FRANKLIN COUNTY) 19
TABLE 7: RAIL CROSSING PRIORITIES (JACKSON COUNTY) 20
TABLE 8: RAIL CROSSING PRIORITIES (JEFFERSON COUNTY) 21
TABLE 9: RAIL CROSSING PRIORITIES (PERRY COUNTY) 22

APPENDICES

APPENDIX 01: PER Pyatt Culter Road APPENDIX 01: JAC N. Marion Street APPENDIX 01: JEF Dix Irvington Road

APPENDIX 02: PER Greens Market Road
APPENDIX 02: JAC Airport Road
APPENDIX 02: JEF Richview Road
APPENDIX 02: FRA Akin Blacktop Road

APPENDIX 03: FRA Eaton Road
APPENDIX 03: FRA Valier Lake Road APPENDIX 03: JAC Crane Road
APPENDIX 03: JEF Auburn Lane
APPENDIX 03: PER Old DuQuoin Road

INTRODUCTION

This Final Report summarizes the background, methodology and recommendations of the Greater Egypt Safety Study. This study evaluated 5 -years of crash data (204-2018) within an area comprising four counties of the Greater Egypt Regional Planning and Development Commission (GERPDC). The purpose of the safety study was to identify overrepresented crash types, prioritize high crash areas on the local roadway network and at-grade rail crossings, recommend improvements to mitigate crashes at the highest-priority locations, and submit applications to obtain funding to construct improvements.

This study was conducted in coordination and would not be possible without the local knowledge and assistance provided by the GEPDC staff and the member agencies including Jefferson, Jackson, Perry and Franklin Counties.

The body of the report is divided into 3 sections:

1. GERPDC-wide crash analysis and methodologies used in developing a priority ranking for high crash locations on the local roadway network
2. GERPDC-wide crash analysis and methodologies used in developing a priority ranking for high hazard rail crossings on local roads.
3. The Appendix section of the report provides site specific analysis of the crash patterns and existing conditions at the priority locations.

Safety countermeasures have been identified for each location, focusing on low-cost improvements that have the potential to mitigate the high crash frequency.

STUDY AREA

The study area for the safety study consisted of all county maintained roadways within four counties: Jefferson, Jackson, Perry and Franklin. Roadways maintained by the Illinois DOT and local cities and villages were not included within the study area. Additionally, Williamson County did not participate in the study. The four study counties of are shown in Figure 1.

HIGHWAY SAFETY DATA

Highway crash data for the entire study area was provided to the GEPDC by IDOT District 9. This data was provided in a Geographic Information System

FIGURE 1: GREATER EGYPT STUDY AREA

(GIS) shapefile with location data for each crash. The crash database is compiled every year from the local and state police crash records submitted to the Illinois Department of Transportation (IDOT) Division of Traffic Safety. The crash data files contain information required to identify and analyze the crash records:

- crash ID	- light condition	- crash severity	
- street codes	- type of collision	- road	
- day of crash	- direction	condition	
- time of crash	- maneuvers	-number of persons - road feature	- type of vehicle

One of the goals of the Federal Highway Administration and Illinois DOT is to address fatal and serious injury crashes. Crashes are categorized by injury severity, as K, A, B or C injury or Property Damage Only (PDO). The definition of each of these severities is summarized below.

1. Fatal Crash: A motor vehicle crash (single or multiple) that results in the death of one or more persons.
2. Injury Crash: Any motor vehicle crash that results in one or more non-fatal injuries.

- A-Injury (Incapacitating Injury): Any injury, other than a fatal injury, which prevents the injured person from walking, driving, or normally continuing the activities he/she was capable of performing before the injury occurred. Type A crashes includes severe lacerations, broken limbs, skull or chest injuries, and abdominal injuries.
- B-Injury (Non-incapacitating Injury): Any injury other than a fatal or incapacitating injury, which is evident to observers at the scene of the crash. Includes lump on head, abrasions, bruises, minor lacerations.
- C-Injury (Possible Injury): Any injury reported or claimed which is not either of the above injuries. It includes momentary unconsciousness, claims of injuries not evident, limping, complaint of pain, nausea, and hysteria.

3. PDO: Property-damage only crash.

Roadway data was pulled from the Illinois Roadway Information System (IRIS) database. In addition to the physical location of the roadway provided in a GIS shapefile, IRIS data provides basic information such as functional classification and roadway ownership. Additional information such as roadway width, Average Daily Traffic (ADT) and condition rating may be provided but primarily on state-maintained roadways. This more detailed information was not available for the local roadways within the study area. The IRIS GIS shapefile also segments roadways based on logical roadway termini, such as intersections or changes in road classification. This segmentation was used as the basis for identification of high crash roadway segments.

HIGHWAY SAFETY ANALYSIS

Crash analysis was conducted to identify the priority locations within the GERPDC roadway system. Suing crash data from January 1, 2014 - December 31, 2018. Figure 2 shows all crashes in the database for the study counties.

Prior to the identification of high crash locations area wide crash analysis was completed to determine emphasis areas within the MPO roadways that may be the focus of the safety efforts. Figure 3 shows a comparison of crash severity on county roads vs state roadways and other local agencies. As shown in the figure, the crash frequency is lower than state routes, but has injury and fatality rates similar to state routes.

FIGURE 3: CRASH FREQUENCY AND SEVERITY BY ROUTE TYPE

When comparing the type of crash on the two systems (Figure 4), the county-maintained system is dominated by animal and fixed object crashes, while intersection type crashes (turning and angle) are higher on the state system and city roadways. Fixed object crashes were over $2 x$ higher than on the state system. Fixed object crashes also represent the highest frequency of fatal crashes on the county system with 25 fatal crashes out of 1762 crashes. The second most frequent type of fatal crashes on the local system was overturned crashes, with 10 fatal crashes, though only having 404 total crashes.

FIGURE 4: CRASH TYPE BY ROADWAY TYPE

Figure 5 shows the frequency and severity for all county roadways within the study area.

FIGURE 5: COUNTY ROAD CRASH TYPE AND SEVERITY

Crash data was also analyzed to identify other patterns within the crash data that may assist in the identification of priority locations. Figure 6 shows the frequency of crash type by County. All Counties have comparable total crash frequencies; however, it is noted that Jefferson County has a slightly higher number of overturned crashes compared to the other counties. Jackson has the highest number of Fixed Object crashes almost doubling other county frequencies.

FIGURE 6: CRASH TYPE BY COUNTY

Figure 7 shows the severity by county. As shown, Jackson and Jefferson have the highest severe injury rates which is likely attributed to the high frequency of fixed object and overturned crashes noted above.

FIGURE 7: CRASH SEVERITY BY COUNTY

Crashes were also analyzed by time of day. For this analysis, crashes were categorized into 3 groups:

- Lane Departure which included fixed object, overturned, head on or opposite direction sideswipe
- Intersection Crashes which included rear end, angle and turning crashes
- Animal Crashes

Figure 8 shows the frequency of crashes by time of day for these crashes. As can be seen, intersection crashes follow traditional volume peaks with a small peak in the AM, increasing throughout the day and the highest peak correlating with the PM peak period. Conversely, lane departure crashes peak before the AM peak and after the PM peak, likely associated with the increased speed that is possible in the off-peak hours. Animal crashes remain relatively consistent throughout all time periods with a small increase around the AM and PM peak periods, likely attributed to the increase in exposure.

Due to the prevalence of Animal crashes and the lack of engineering solutions to these types of crashes, Animal crashes were removed from the dataset in determining the priority safety locations.

FIGURE 8: CRASH FREQUENCY AND TYPE BY TIME OF DAY

SITE SELECTION METHODOLOGY

A data driven approach was used to identify the priority locations for in depth review and the identification of safety countermeasures. As noted above, roadway segments were based on the underlying GIS layer segmentation. Segmentation is based on logical termini of the roadway section, such as intersections, or changes in typical section, functional classification etc. Lengths generally range from 0.5 miles to 1.5 miles in length.

An Equivalent Property Damage Only (EPDO) measure was used to rank each intersection and segment. The EPDO ranking addresses the need to focus on higher crash severities as opposed to locations with high crash frequency but low severity. The EPDO assigns a weight based on the crash severity. For the purposes of this analysis, a weight of 25 was used for fatal crashes and a weight of 10 for A Injury crashes. All other crashes were weighted as one (1). Equation 1 below shows the calculation to determine the EPDO which was used on all roadway segments and intersections. This methodology is consistent with the EPDO ranking used by the Illinois DOT Highway Safety Improvement Program (HSIP).

EQUATION 1: EPDO CRASH CALCULATION

$[25)^{*}(\#$ of $F A)+10^{\circ}(\#$ of $A A)+(z$ of $(P A)+(\#$ of $(A)+(\#$ of $P D C)$ Totol Crosbess

Where,

> FA= Fatal crashes
> $A A=$ Crash where the most severe injury is an A injury $B A=$ Crash where the most severe injury is a B injury
> $C A=$ Crash where the most severe injury is a C injury $P D O=$ Property Damage Only

Once EPDO rankings were determined based on the crash data set, sites were also reviewed to determine if they met the Illinois DOT HSIP eligibility requirements. This requires having a minimum of 1 fatal crash or 2 Type A Injury crashes over a 5 -year period. Crashes were reviewed from the 5-year period from January 1, 2014 to December 31, 2018 for this analysis.

Updated crash data including 2019 data was obtained by GEPDC staff from IDOT on March 17, 2020. The purpose was to use the most recent crash data when selecting priority safety locations. A closer review of the 2019 dataset found the typical number of annual crashes where about 40\% lower for 2019 (see Figure 9) indicating the dataset was not complete.

FIGURE 9: 2019 DATA COMPARION (3/17/20)

Nurrber of Crinhes by Wour

A similar inquiry about the status of 2019 crash data was made of IDOT on February 17, 2021. The 2019 and the 2020 were nearly complete at that time. Therefore, the 2014-2018 dataset was used for all analysis to prioritize the highway safety locations.

HSIP PRIORITY LISTING

CMT provided the initial safety priority listing to GERPDC staff and the County Engineers on March 3, 2020. The top locations for each county were presented to the committee based on the data driven approach outlined above and initial field reviews of these sites. Based on input from the committee the priority list was refined. These adjustments were based on the following reasons.

1. Locations did not meet eligibility for IDOT HSIP funding assistance which requires a minimum of 1 fatal crash or 2 Type A injury crashes within the last 5 -years.
2. Safety countermeasures were implemented within the last 3 years thus may have improved the safety performance in the future.
3. Locations initially identified as under local ownership were in fact under the jurisdiction of non-county agencies.

An updated priority list of safety locations was developed for each County that combined the Segment and Intersections lists into a consolidated Top 20 list. The top 4 locations were selected to conduct a more detailed evaluation of the crash data to determine if feasible countermeasures could be developed to receive IDOT Highway Safety Improvement Program (HSIP) funding. The top location from each county was the basis for a funding application for the IDOT FY2022 Highway Safety Improvement Program (HSIP) funding round.

The safety applications for FY2022 were submitted to IDOT on June 12, 2020. Counties were informed by IDOT of the status of the safety application on August 21, 2020. The following applications were successful in securing funding for construction:

Perry County. The project, identified by IDOT as HSIP \#202012024, involves paved shoulders, longitudinal rumble strips, shoulder regrading and curve warning signs along Pyatt Cutler Road. Included in this approval are the improvements outlined in the supplemental 1 and 2 packages included in the application (mile $00.00-12.80$). The federal HSIP commitment for this project will not exceed $\$ 2,268,066$. See Appendix 01 PER Pyatt Culter for additional information.

Jackson County. The project, identified by IDOT as HSIP \#202012019, involves re-profiling railroad crossings within or near horizontal curves, paved shoulders with longitudinal rumble strips, and curve warning signs along North Marion Street between Glade Lane and Fisher Street. Included in this approval is the combined Alternative 1 and Alternative 2 proposals submitted as part of the application package. The federal HSIP commitment for this project will not exceed $\$ 644,022$. See Appendix 01 JAC N. Marion Ext for additional information.

Jefferson County. The project, identified by IDOT as HSIP \#202012017, involves paved shoulders, longitudinal rumble strips, shoulder regrading and curve warning signs along Dix Irvington Road from US 51 to 0.5 Miles east of Copple Lane. IDOT prefers the project to be continuous along Dix Irvington Road thus additional funding is provided to complete safety improvements between the two segments outlined in the application. The federal HSIP
commitment for this project will not exceed \$1,616,009. See Appendix 01 JEF Dix Irvington for additional information.

Tables $1-4$ show the priority list used to select priority locations for safety applications for each county. The priority lists are color coded to represent the information:

	HSIP eligible locations
	FY2022 safety funding award
	FY2023 safety funding application
	non-HSIP eligible locations

A similar process was applied when selecting priority locations for safety applications for the IDOT FY 2023 Highway Safety Improvement Program (HSIP) funding round. Safety data used for the second round of safety applications were due May 7, 2021 and were based on 2015-2019 safety data. The 2019 dataset was complete to perform detailed safety analyses at the project level. Preparation of a safety application may not have resulted in the submission of the application to IDOT for various reason including other safety priorities of the county at the time applications were due. For example, the N. Marion Street application was initially prepared in 2019 but was not submitted to IDOT until June 2020.

See the following appendix sections for those studies and applications that were developed for the FY2023 round:

Appendix 02 PER Greens Mkt

Appendix 02 JAC Airport

Appendix 02 JEF Richview

Appendix 02 FRA Akin Blacktop

Final scoring of the FY2023 applications by IDOT have not been received at the time of this report.
This safety data was used to identify potential safety countermeasures based on the FHWA's Proven Safety Countermeasures, the Highway Safety Manual, and the Manual on Uniform Traffic Control Devices (MUTCD). Countermeasures were also developed with a focus on low-cost safety measures such as signing and striping. However, where appropriate or necessary higher cost countermeasure may be identified, if warranted by the frequency and severity of the safety performance issue. The appendix sections include the detailed studies and applications resulting from the analysis outlined above.

TABLE 1: PRIORITY HSIP LOCATIONS (PERRY COUNTY)

RANK	ROAD_NAME	$\begin{gathered} \hline \text { BEG_ST } \\ \hline \end{gathered}$	END_STA	AADT	$\begin{aligned} & \hline \text { JUR } \\ & \text { TYPE } \\ & \hline \end{aligned}$	TWP	Fatal	A Injury	B or C Injury	PDO	EPDO	HSIP Eligible	Comments
1	COUNTY LINE RD	6.48	7.48	2100	6	CO UNIT RD	0	3	8	7	45	Yes	Randolph Co maintenance
2	E TAMAROA RD	0.86	2.63	275	3	CO UNIT RD	1	1	0	1	36	Yes	Rank \#2
2	WHITE WALNUT RD	5.26	6.14	850	3	CO UNIT RD	1	1	0	1	36	Yes	Rank \#3
4	COUNTY LINE RD	9.49	10.92	3200	6	CO UNIT RD	0	2	3	9	32	Yes	Randolph Co maintenance
5	CUTLER-TRICO RD	0	2	650	9	CO UNIT RD	0	2	1	6	27	Yes	Rank \#4. Location includes Cutlre-Trico Rd/ PyattCutler Rd intersection (Int Rank \#3) and Cutler-Trico Rd/ School St (Int Rank \#18)
5	PYATT-CUTLER RD	8.51	12.47	1650	3	CO UNIT RD	0	2	3	4	27	Yes	Rank \#1.
5	GREENS MARKET RD	2.24	3.51	450	9	CO UNIT RD	1	0	1	1	27	Yes	Rank \#5. Location includes Kathleen Rd/ Greens Market Rd (Int Rank \#1). Combine with Segment \#11.
8	HOLLYHOCK RD	1.28	2.25	75	9	CO UNIT RD	1	0	0	0	25	Yes	Rank \#6.
8	ROBIN RD	1.47	2.33	75	9	CO UNIT RD	1	0	0	0	25	Yes	Rank \#7.
8	WHITE TAIL RD	2.28	4.01	100	9	CO UNIT RD	1	0	0	0	25	Yes	Rank \#8.
11	GREENS MARKET RD	2.75	3.2	1000	3	CO UNIT RD	0	2	0	1	21	Yes	Combine with Segment \#5. Location includes Greens Market Rd/ Wells St Rd (Int Rank \#4).
11	E PARK ST RD	0.5	2.45	1000	3	CO UNIT RD	0	1	3	8	21	No	
13	REESES HILL RD	0	1.04	200	9	CO UNIT RD	0	1	1	4	15	No	
13	BETHEL CHURCH RD	3.29	4.4	275	9	CO UNIT RD	0	1	1	4	15	No	
13	WELLS ST RD	0	1.53	450	3	CO UNIT RD	0	1	2	3	15	No	
16	NASHVILLE RD	0.44	1.79	1000	3	CO UNIT RD	0	1	0	4	14	No	
17	TODDS MILL RD	0	1.74	350	3	CO UNIT RD	0	1	0	2	12	No	
17	PYATT-CUTLER RD	2.59	5.22	1350	3	CO UNIT RD	0	1	1	1	12	No	
17	NASHVILLE RD	0.07	0.44	1000	3	CO UNIT RD	0	1	1	1	12	No	
17	SPRUCE RD	0	1.04	0	9	CO UNIT RD	0	1	2	0	12	No	
17	OLD DU QUOIN RD	0.29	1.27	1050	3	CO UNIT RD	0	1	2	0	12	No	
17	PANDA BEAR RD	8.05	10.35	150	9	CO UNIT RD	0	1	1	1	12	No	

TABLE 2: PRIORITY HSIP LOCATIONS (JACKSON COUNTY)

RANK	ROAD_NAME	$\begin{gathered} \hline \text { BEG_ST } \\ \text { A } \\ \hline \end{gathered}$	END_STA	AADT	JUR_TYPE	TOWNSHIP	Fatal	A Injury	B or C Injury	PDO	EPDO	HSIP Eligible	Comments
1	TOWN CREEK RD	3.04	4.42	1000	3	SAND RIDGE	2	1	2	7	69	Yes	Rank \#1. Location includes Town Creek Rd/ Pond Ridge Rd intersection (Int Rank \#4). Combine with Town Creek Rd (Seg Rank \#19).
2	E PLEASANT HILL RD	1.61	2.33	5500	9	CARBONDALE	1	2	6	8	59	Yes	previously studied 2019. Location includes E. Pleasant Hill/ Warren Rd (Int Rank \#2) and E. Pleasant Hill/ Wall St (Int Rank \#7)
	BRICK PLANT ROAD												
3	COUNTRY CLUB RD	2.04	3.1	1900	9	MURPHYSBORO	0	4	6	7	53	Yes	Rank \#4: Location includes Chautauqua Rd/ Country Club Rd intersection (Int Rank \#9)
4	AVA RD	5.49	7.06	2750	3	LEVAN	1	1	3	9	47	Yes	Rank \#2. Location includes the following intersections with Ava Road: Wece Ln (Int Rank \#3), McLaughlin/ Dunivan Rd (Int Rank \#5), and Mudline Rd (Int Rank \#12).
5	AIRPORT RD	2.03	2.99	1450	9	CARBONDALE	1	1	2	4	41	Yes	Rank \#5.
6	ROYALTON RD	0.57	4.25	1550	3	ELK	1	1	2	1	38	Yes	Rank \#6.
7	CHAUTAUQUA RD	0	1.79	800	9	MURPHYSBORO	1	0	0	6	31	Yes	Rank \#7.
7	VAUGHN RD	0	0.54	750	9	DESOTO	1	0	0	5	30	Yes	Previously studied 2019.
9	POWER PLANT RD	0.44	1.72	175	9	GRAND TOWER	1	0	1	1	27	Yes	Rank \#8.
9	CEDAR CREEK RD	0.14	0.71	225	3	MAKANDA	1	0	1	1	27	Yes	Rank \#9.
11	N MARION ST EXT	0.62	1.14	400	3	CARBONDALE	1	0	1	1	27	Yes	Prevously studied 2019.
11	NEUNERT RD	7.71	8.55	225	3	FOUNTAIN BLUFF	1	0	0	1	26	Yes	Rank \#10.
11	ASH RD	0	0.25	0	9	LEVAN	1	0	0	0	25	Yes	
11	SARENSEN RD	0.2	0.22	0	9	SAND RIDGE	1	0	0	0	25	Yes	
15	LOVERS LA	4.02	4.79	50	9	SAND RIDGE	1	0	0	0	25	Yes	
16	UNION SCHOOL RD	0.5	1.26	250	9	BRADLEY	1	0	0	0	25	Yes	
16	MARLBORO RD	0.54	2.72	125	9	ORA	0	2	1	2	23	Yes	
18	DALLAS RD	0.7	1.29	900	9	SOMERSET	0	2	1	1	22	Yes	
19	TOWN CREEK RD	2.6	3.03	1000	3	SAND RIDGE	0	2	0	1	21	Yes	Combine with Town Creek Rd segment \#1
19	PUMP HOUSE RD	1.02	2.2	450	9	MURPHYSBORO	0	2	0	1	21	Yes	
19	DUNIVAN RD	4.09	4.87	900	9	SOMERSET	0	2	1	0	21	Yes	

TABLE 3: PRIORITY HSIP LOCATIONS (JEFFERSON COUNTY)

RANK	ROAD_NAME	$\begin{gathered} \hline \text { BEG_ST } \\ \text { A } \\ \hline \end{gathered}$	END_STA	AADT	JUR_TYPE	TOWNSHIP	Fatal	A Injury	B or C Injury	PDO	EPDO	HSIP Eligible	Comments
1	E RICHVIEW RD	6.48	7.34	1600	3	SHILOH	1	2	3	2	50	Yes	Rank \#1. Location includes E. Richview Rd/ N. Woodlawn Rd (Int Rank \#7)
2	N ABBOTT LA	9.94	10.77	225	3	MOORES PRAIRIE	0	3	3	4	37	Yes	Rank \#2.
3	E DIX-IRVINGTON RD	0.25	2.53	1950	3	GRAND PRAIRIE	0	3	1	5	36	Yes	Rank \#4. Location combined with Segment \#6 and \#10.
4	NASON RD	0	1.16	500	3	ELK PRAIRIE	1	0	0	4	29	Yes	Rank \#3. Location includes Nason Rd/ E. Sienna Rd intersection (Int Rank \#1)
5	N HALL LA	0	0.57	850	3	CASNER	0	2	1	6	27	Yes	Rank \#5. Location includes Hall Rd/ Chopin Rd intersection (Int Rank \#10)
6	E DIX-IRVINGTON RD	2.76	5.28	1000	3	GRAND PRAIRIE	0	2	2	4	26	Yes	Combine with Segment \#3. Location includes DixIrvington Rd/ Krupp Rd intersection (Int Rank \#10).
6	E STAGECOACH RD	0	1.47	125	9	MCCLELLAN	1	0	0	1	26	Yes	
8	N AUBURN LA	0	0.28	25	9	WEBBER	1	0	0	0	25	Yes	Rank \#7. Location includes Sixth Rd/ Auburn Ln intersection (Int Rank \#2)
8	N PRESLEY LA	0.69	1.47	100	9	MCCLELLAN	1	0	0	0	25	Yes	
10	LYNCHBERG RD	3.15	4.66	175	9	PENDLETON	0	2	1	2	23	Yes	
10	LYNCHBERG RD	1.91	3.15	375	9	DODDS	0	2	1	2	23	Yes	
10	E DIX-IRVINGTON RD	6.04	6.58	1400	3	ROME	0	2	1	2	23	Yes	Combined with Seg \#3. Location includes Dix-Irvington Rd/ Palmer Rd intersection (Int Rank \#15).
10	N TOLLE LA	7.24	7.73	2400	3	MOUNT VERNON	0	2	0	3	23	Yes	Rank \#6. Location includes Pump House Ln/ Tolle Rd intersection (Int Rank \#2) and Loyola Rd/ Tolle Rd intersection (Int Rank \#15).
14	N RICHVIEW LA	2.54	4.2	1250	3	GRAND PRAIRIE	0	2	0	2	22	Yes	
15	E IDLEWOOD RD	1.73	3	325	9	MOUNT VERNON	0	2	0	1	21	Yes	
15	N SPRING GARDEN LA	2.04	3.68	150	9	SPRING GARDEN	0	2	1	0	21	Yes	
17	N MILLER LAKE LA	3.21	4.49	600	3	MOUNT VERNON	0	1	1	7	18	No	
18	WOODLAND DR	0.88	1.73	600	3	DODDS	0	1	2	4	16	No	
18	N BOYD LA	1.91	3.82	900	3	ROME	0	1	4	2	16	No	
20	E RICHVIEW RD	8.68	10.38	2350	3	SHILOH	0	1	0	5	15	No	

TABLE 4: PRIORITY HSIP LOCATIONS (FRANKLIN COUNTY)

RANK	ROAD_NAME	$\begin{array}{\|c\|} \hline \text { BEG_ST } \\ \text { A } \\ \hline \end{array}$	END_STA	AADT	JUR_TYPE	TOWNSHIP	Fatal	A Injury	B or C Injury	PDO	EPDO	HSIP Eligible	Comments
1	AKIN BLACKTOP	2.65	5.43	750	3	EASTERN	2	1	2	8	70	Yes	Rank \#4. Location includes Akin Blacktop/ Bessie Rd intersection (Int Rank \#2)
2	N THOMPSONVILLE RD	9.44	10.57	1200	3	NORTHERN	0	4	2	5	47	Yes	Rank \#6. Segment only crashes. Confirm if intersection related crashes
3	ORIENT RD.	0	0.16	1500	3	DENNING	1	2	0	1	46	Yes	Rank \#1. Location includes the Orient/Carr intersection (Int Rank \#3) and the Orient/Lincoln intersection (Int Rank \#8)
4	YELLOW BANKS RD	6.45	6.75	850	3	DENNING	1	2	0	0	45	Yes	Rank \#2. Location includes Akin Blacktop/ Bessie Rd intersection (Int Rank \#2)
	ORIENT BLACKTOP \& YELLOW BANKS RD						0	4	0	2	42	Yes	Rank \#3.
6	PARK STREET RD	6.34	8.36	1150	3	BROWNING	0	3	0	5	35	Yes	Rank \#7. Location includes Park Street Rd/ Water Rd inttersection (Int Rank \#18)
7	NUMBER 9 BLACKTOP	3.47	6.56	375	3	CAVE	0	3	1	3	34	Yes	Rank \#8.
8	MCLEANSBORO RD	0.05	0.9	1200	3	BENTON	1	0	0	4	29	Yes	
8	N THOMPSONVILLE RD	12.66	14.8	1200	3	EASTERN	1	0	1	3	29	Yes	Rank \#5. Location includes Knob Prairie/ Thompsonville Rd intersection (Int Rank \#4)
9	AKIN BLACKTOP	0	2.41	950	3	BENTON	0	1	1	15	26	No	
9	JEFFERSON ST	0	0.5	700	9	TYRONE	1	0	0	1	26	Yes	
11	DEERING RD	1.91	2.26	1250	3	BENTON	0	2	1	4	25	Yes	Rank \#9. Location includes Deering Rd/ Ruembler Crossing Rd intersection (Int Rank \#4)
12	LOGAN RD	3.81	4.02	25	9	FRANKFORT	1	0	0	0	25	Yes	
12	ROAD NUMBER 10	0	0.57	0	9	BENTON	1	0	0	0	25	Yes	
12	FRANKLIN AVE	0	0.5	325	9	DENNING	1	0	0	0	25	Yes	
15	CREEK NATION BLKTOP	1.78	3.05	650	3	SIX MILE	0	2	1	1	22	Yes	
16	WEBB HILL RD	0	1.78	300	3	NORTHERN	0	2	0	1	21	Yes	Rank \#10. Location includes Webb Hill Rd/ Webb Hill Rd/ Ewing Rd (Int Rank \#8)
17	CARLYLE RD	0.82	1.77	450	3	CAVE	0	2	1	0	21	Yes	
18	EWING RD	0.3	0.47	2100	3	EWING	0	2	0	0	20	Yes	
19	DEERING RD	2.26	3.7	1250	3	FRANKFORT	0	1	4	3	17	No	
19	DEERING RD	0.92	1.91	1200	3	BENTON	0	1	3	4	17	No	

RAILROAD CRASH DATA

Railroad Crash Data for the entire study area was derived from the Federal Rail Administration's (FRA) Crossing Inventory and Accident Report Database1. The FRA's database is a national collection of all crash occurrences between a train and vehicle at highway-rail crossings and is updated quarterly. U.S. Federal Regulation requires all rail accidents/incidents to be reported to the FRA. Crash data includes crashes occurring between January 1990. The crash data contains the following information required to identify and analyze crash records:

[^0]- Crossing Location
- Crash Date/Time
- Reporting Railroad
- Personal Injury Status (Fatal/Injury/Property Damage)
- Vehicle Type, Speed \& Direction
- Air Temperature, Visibility \& Weather present
- Train Speed
- Number of Train Locomotives \& Cars
- Warning Devices Present
- Observed Cause of Crash

Crashes in each study jurisdiction (Franklin, Jackson, Jefferson \& Perry Counties) were categorized by crash severity, and Highway-Rail Grade Crossings were ranked based on the number of crash occurrences. Crossing locations in municipal or township jurisdictions were excluded from the study and those with a greater frequency of crash occurrences were elevated on the list. Crossings with high crash frequency were considered to have enhanced safety concerns, with a total of 10 crossings being further analyzed for existing safety conditions. In certain cases where crossings with crash history have had safety enhancements addresses, additional grade crossings were added to the priority analysis. Figure 10 shows the location of all highway-rail crossings in the study area - with the top priority rail crossings highlighted in red.

Roadway Crossing data was retrieved from the FRA's Highway-Rail Crossing Inventory Database, providing data such as traffic volumes, speeds, geometry, warning devices, and crossing type. This data was utilized to derive the IDOT Hazard Index Rating and Crash Prediction Models to prioritize the need for crossing safety enhancements.

RAIL CRASH ANALYSIS

Rail crash analysis was conducted to identify priority rail locations of the top 10 highway-rail crossings with high crash frequencies. Figure 11 shows all rail accidents in the Franklin, Jackson, Jefferson \& Perry County's roadway jurisdictions since 1990 and corresponding average crash prediction. Crashes occurring previous to 1990 were not included in this analysis, as crossing conditions have likely changed since many occurred.

Rail crashes occur far less frequently than roadway vehicle crashes, and often result in serious injuries or fatalities. Due to this, any vehicle-train crash is considered significant. Crossings with crash history were analyzed based on crash frequency, date of occurrence, and resulting injury status.

FIGURE 11: RAIL CRASH FREQUENCY \& AVG. CRASH PREDICTION BY COUNTY

The rail Crossing safety analysis was performed based on the USDOT Highway-Rail Grade Crossing Handbook (3rd Edition) and utilizes the USDOT Crash Prediction formulas. Additionally, the Illinois Hazard Index (IHI) Rating was performed for each of the 10 crossings. The IHI formula results in a numeric value that reflects the generalized safety of the highway-rail grade crossing - quantifying the exposure hazards between a train and vehicle. The higher the IHI , the greater exposure/hazard risk exists whereas the lower the rating results in a lesser exposure/hazard risk. Figure 12 shows the average IHI Rating in each county.

FIGURE 12: AVERAGE ILLINOIS HAZARD INDEX RATING BY COUNTY

SITE SELECTION METHODOLOGY

The objective of the analysis was to identify crossings which have had previous vehicle-train crashes and/or those that have significant safety concerns present. A data-driven approach was taken to identify priority locations where a further in-depth review would occur to identify safety countermeasures. The analysis often resulted in crossings with minimal warning devices, high roadway traffic volumes, and/or high rail traffic volumes to have a higher priority ranking.

The initial rail crossing priority ranking was shared with SIMPO and County staff in November 2020, when crossings were identified and recommended to be included in an Illinois Commerce Commission (ICC) Grade Crossing Protection Fund (GCPF) application for funding.
Adjustments were made based on conversations with local county staff and the priority list was refined. Adjustments were based on the following reasons:

1. ICC funding previously secured for crossing improvements and will be implemented within the next 5 years.
2. The railroad recently (since study began) upgraded and installed warning devices.
3. Initial priority locations were in fact under an IDOT or municipal jurisdiction.

ICC GCPF applications were developed and submitted for one (1) crossing per county, with the exception of Franklin County which two (2) applications were submitted. Funding for safety countermeasures at railroad grade crossings included: warning device upgrades, crossing panel replacement, roadway widening, roadway realignment, parallel roadway turn lanes, pavement marking, and signing.

Upon review of funding applications submitted, ICC GCPF funding was successfully secured \& programed into the ICC's 5-Year Crossing Safety Improvement Plan (FY 2022-2026) for five (5) crossings:

1. Auburn Lane | DOT \#724755V | M.P. 95.25 (Jefferson County - Bluford)
2. Old DuQuoin Road | DOT \#293679L | M.P. 73.24 (Perry County - DuQuoin)
3. Eaton Road | DOT \# 295225 | M.P. 101.90 (Franklin County - Thompsonville)
4. Valier Lake Road | DOT \#069258L | M.P. 157.01 (Franklin County - Valier)
5. Falcon Lane | DOT \#724756C | M.P. 94.76 (Jefferson County - Bluford)

Additionally, while a funding request/application was not submitted, after reviewing all applications and county prioritization lists, the ICC is recommending an additional nearby crossing to Auburn Lane, Falcon Lane (724756C), to be programmed in the 5-Year Plan for active lights and gates safety improvements.

FINAL PRIORITY LISTING

Based on the methodology presented above, rail crossings priorities were identified per county. Table 5 and Figure 13 shows the highest priorities, and those submitted for ICC GCPF funding requests. Tables 6 - 9 show the priority list of crossings identified in each crossing. As future funding opportunities become available, these lists are designed to be utilized as a reference for safety enhancement recommendations. Improvements of at-grade rail crossings often consist of warning device upgrades (Automatic Flashing Lights \& gates), roadway approach widening \& profile adjustments, pavement marking, and signing.

TABLE 5: TOP PRIORITIZED CROSSINGS \& ICC GCPF FUNDING SUBMITTALS

Jurisdiction	Road Name	USDOT \#	RR	RR M.P.	Current Protection	Avg. Daily Traffic
	Eaton Road	295225 U	CN	101.9	Crossbucks	25
	Valier Lake Road	069258 L	BNSF	157.01	Crossbucks	25
Jackson	Crane Road	431060 Y	UP	321.02	Gates	200
Jefferson	Auburn Lane	724755 V	NS	95.25	Crossbucks	25
Perry	Old DuQuoin Road	293679 L	CN	73.24	Crossbucks	700

Successful ICC Funding Programmed (FY 2022-2026)

FIGURE 13: LOCATION OF HIGHEST PRIORITY CROSSINGS

TABLE 6: RAIL CROSSING PRIORITIES (FRANKLIN COUNTY)

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX
1	St. Joseph Rd. (Benton)	431091X	UP	300.65	Flashing Lights	250	1	0.5487	0.0697	0.1658	3,539,337
1	Linn Rd. (Benton)	431095A	UP	299.92	Flashing Lights	250	1	0.5487	0.0697	0.1658	3,539,337
3	Dry Road (Ziegler)	431086B	UP	307.35	Flashing Lights	100	1	0.4813	0.0678	0.1449	332,325
4	Creek Nation Blacktop (Zeigler)	431085U	UP	307.57	Flashing Lights	75	1	0.4602	0.0648	0.1349	157,711
5	Akin Blacktop (Logan)	295232E	CN	96.74	Flashing Lights	950	0	0.3729	0.3729	0.3729	1,240,307
6	Vine Road (Sesser)	069252V	BNSF	155.23	Flashing Lights	75	2	0.2805	0.0272	0.0864	397
7	River Road (Royalton)	431077C	Mid America	311.46	Flashing Lights	275	0	0.2543	0.2543	0.2543	11,720
8	Lake Benton Rd (Whittington)	167613S	UP	293.55	Gates	200	1	0.2346	0.0327	0.0654	830,087
9	Izaac Walton Rd (Valier)	069260M	BNSF	159.58	Crossbucks	650	0	0.2309	0.2309	0.2309	133,964
10	Urbain Rd (Christopher)	293700P	CN	82.96	Gates	400	2	0.1922	0.0158	0.0602	64,749
11	Bessie Road (Logan)	295233L	CN	96.9	Flashing Lights	150	0	0.1841	0.1841	0.1841	372
12	West End Road (Thompsonville)	295215N	CN	71.32	Flashing Lights	25	0	0.1689	0.1689	0.1689	100
13	Fairview Road (Christopher)	293693G	CN	80.7	Gates	125	1	0.1422	0.0117	0.0430	4,796
14	Valier Lake Rd (Valier)	069258L	BNSF	157.01	Crossbucks	25	0	0.1030	0.1030	0.1030	29
15	Baseline Road (Logan)	295231X	CN	96.64	Crossbucks	100	0	0.1014	0.1014	0.1014	163
16	$\begin{gathered} \text { Eaton Road } \\ \text { (Thompsonville) } \\ \hline \end{gathered}$	295225U	CN	101.9	Crossbucks	25	0	0.0776	0.0776	0.0776	5

ICC Grade Crossing Improvement Funding Previously Secured

TABLE 7: RAIL CROSSING PRIORITIES (JACKSON COUNTY)

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX
1	Levee Road (Jacob)	436221J	UP	71.66	Gates	175	2	0.3813	0.0555	0.1056	271,480
2	$\begin{aligned} & \hline \text { Big Lake Rd } \\ & \text { (Jacob) } \\ & \hline \end{aligned}$	436208V	UP	81.7	Gates	50	1	0.2721	0.0462	0.0751	115,243
3	Crane Rd (De Soto)	431060Y	UP	321.02	Gates	200	1	0.2718	0.0315	0.0820	1,071,561
4	Hallidaboro Rd (Hallidaboro)	295068D	CN	296.8	Gates	300	1	0.2574	0.0364	0.0809	210,960
5	Bowlby Road (De Soto)	431059E	UP	321.8	Gates	125	2	0.2451	0.0284	0.0739	58,447
6	Lovers Lane (Grimsby)	430978W	UP	335.61	Gates	50	1	0.2288	0.0304	0.0643	5,771
7	Howardton Rd (Grand Tower)	445810X	UP	90.6	Gates	25	1	0.1986	0.0345	0.0589	30,499
8	Big Muddy Levee Rd (Grand Tower)	445805B	UP	94.19	Gates	25	2	0.1985	0.0296	0.0592	30,048

ICC Grade Crossing Improvement Funding Previously Secured

TABLE 8: RAIL CROSSING PRIORITIES (JEFFERSON COUNTY)

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX
1	North St (Mt. Vernon)	724772L	NS	86.94	Flashing Lights	225	1	0.4424	0.0429	0.1363	117,937
2	Tolle Rd (Mt. Vernon)	724774A	NS	86.21	Gates	1300	2	0.3300	0.0320	0.1017	6,045,910
3	Wells Bypass (Mt. Vernon)	431021H	UP	121.57	Gates	3050	1	0.3258	0.0055	0.0840	2,736,753
4	Idlewood Rd (Mt. Vernon)	167748X	UP	271.24	Gates	325	1	0.3230	0.0451	0.0974	2,920,247
5	East Stagecoach Road (Waltonville)	069232J	BNSF	141.12	Crossbucks	125	2	0.3072	0.0298	0.0947	1,870
6	Chestnut Ln (Opdyke)	724762F	NS	89.88	Gates	950	1	0.2873	0.0278	0.0885	1,778,837
7	E Oakton Road (Mt. Vernon)	167747R	UP	271.75	Gates	150	2	0.2725	0.0380	0.0822	97,486
8	Auburn Lane (Bluford)	724755V	NS	95.25	Crossbucks	25	2	0.2119	0.0205	0.0653	2,122
9	$\begin{gathered} \text { Beal Rd } \\ \text { (Dix) } \end{gathered}$	724806D	NS	79.63	Gates	175	1	0.2088	0.0202	0.0643	33,500
10	Stanford Ln (Bluford)	724758R	NS	92.94	Gates	150	1	0.2010	0.0195	0.0619	22,470
11	$\begin{gathered} \hline \text { Douthit Ln } \\ \text { (Dix) } \\ \hline \end{gathered}$	724779J	NS	75.98	Gates	125	1	0.1921	0.0186	0.0592	14,010
12	Park Ave (Mt. Vernon)	$724773 T$	NS	86.48	Gates	100	1	0.1815	0.0176	0.0559	7,441
13	East Midnight Road (Bonnie)	167602E	UP	285.96	Gates	25	1	0.1767	0.0247	0.0533	3,796
14	Dubois Rd (Waltonville)	072320X	BNSF	144.655	Gates	75	1	0.1323	0.0103	0.0371	280
15	E Freesia Rd (Mt. Vernon)	431022P	UP	120.68	Crossbucks	175	1	0.0829	0.0058	0.0254	4,377
16	Main St. (Mt. Vernon)	915458F	EVWR	407.81	Crossbucks	400	1	0.0199	0.0001	0.0061	-

ICC Grade Crossing Improvement Funding Previously Secured

TABLE 9: RAIL CROSSING PRIORITIES (PERRY COUNTY)

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX
1	Pick Road (Pinckneyville)	296166X	CN	63.31	Gates	125	2	0.1508	0.0171	0.0463	3,499
2	Old Du Quoin Road (Du Quoin)	293679L	CN	73.24	Crossbucks	700	0	0.1415	0.1415	0.1415	26,367
3	$\begin{gathered} \hline \text { Valier Carpet Rd } \\ \text { (Tamaroa) } \\ \hline \end{gathered}$	430969X	UP	99.28	Crossbucks	100	1	0.1048	0.0087	0.0328	1,047
4	Cutler-Trico Rd (Percy)	294880 T	CN	581.25	Crossbucks	99	1	0.1045	0.0020	0.0269	275
5	Tanglefoot Road (Du Quoin)	2961697	CN	64.84	Crossbucks	25	2	0.1006	0.0114	0.0309	124
6	Lazy W Rd (Du Quoin)	296176D	CN	66.64	Gates	25	1	0.0972	0.0122	0.0298	36
7	District 204 Road (Pinckneyville)	430972F	Mid America	97.72	Crossbucks	75	0	0.0962	0.0962	0.0962	498
8	Camel Road (Cutler)	431177G	Mid America	83.01	Crossbucks	50	0	0.0851	0.0851	0.0851	174
9	Kangaroo Road (Cutler)	431178 N	Mid America	83.23	Crossbucks	50	0	0.0851	0.0851	0.0851	149
10	Crocus Road (Pickneyville)	431188U	Mid America	88.64	Crossbucks	25	0	0.0688	0.0688	0.0688	29
11	Vole Rd (Cutler)	431166U	UP	81.85	Crossbucks	25	1	0.0687	0.0067	0.0212	29

ICC Grade Crossing Improvement Funding Previously Secured

Greater Egypt Safety Study

APPENDIX 01: PER PYATT CULTER ROAD

August 21, 2020
Mr. Brian Otten
Perry County Engineer
3698 State Route 13/127
Pinckneyville, Illinois 62274
Mr. Brian Otten,
The Illinois Department of Transportation is pleased to inform you that your project has been selected for local Highway Safety Improvement Program (HSIP) funding. The project, identified by the Department as HSIP \#202012024, involves paved shoulders, longitudinal rumble strips, shoulder regrading and curve warning signs along Pyatt Cutler Road. Included in this approval are the improvements outlined in the supplemental 1 and 2 packages included in the application (mile $00.00-12.80$).

The federal HSIP commitment for this project will not exceed $\$ 2,268,066$. The deadline for this award to be federally authorized is October 6, 2023 or funds will be rescinded.

Please contact Mr. J. Travis Emery, District 9 Local Roads Engineer at (618) 351-5260, or at James.Emery@illinois.gov to discuss program requirements and preparation of any agreements and / or contracts. Projects located within a Metropolitan Planning Organization (MPO) planning boundary are required to be listed in the local MPO's Transportation Improvement Program (TIP). Questions regarding the HSIP may be directed to Ms. Melinda Kos in the Central Bureau of Local Roads and Streets by telephone at (217) 785-5178.

All HSIP grant recipients must be registered with the State of Illinois to comply with the Grant Accountability and Transparency Act (GATA) 30 ILCS 708. Full GATA compliance is required, including the completion of all pre-award GATA paperwork. You may send inquiries to the Central Bureau of Local Roads and Streets or to DOT.GATA@illinois.gov for further assistance.

An important element of the HSIP is feedback on the safety performance of improved locations. Review and reporting of the crash history at this project location before and after the completion of construction will involve your agency. IDOT will coordinate this review approximately four years after construction is completed.

Sincerely,

Stephane B. Seck-Birhame, P.E., PTOE
Acting Bureau Chief of Local Roads and Streets
cc: Alan Ho, FHWA - Illinois Division
Cynthia Watters, IDOT - Bureau of Safety Programs and Engineering
J. Travis Emery, IDOT District 9

File

$$
\begin{aligned}
& \text { Please provide a detailed cost estimation for all countermeasures along with Messages } \\
& \text { The combinged effect of multiple countermeasures is linited to } 0.60 \text { or the smalest CMF }
\end{aligned}
$$

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIALCASE		－
		$\frac{\otimes}{\square}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\ddot{x}} \\ & \stackrel{\rightharpoonup}{⿺ 𠃊} \end{aligned}$		$$											$\begin{aligned} & \text { g } \\ & \substack{5 \\ \vdots \\ \hline} \end{aligned}$	㿥	$\begin{aligned} & \stackrel{0}{E} \\ & \underset{E}{E} \\ & \frac{5}{\bar{Z}} \end{aligned}$		
Crash Severity	ALL	${ }_{\text {AG }}$	AN	FO	но	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes																			0	0	0
A－Injury Crashes		1		1												1			0	2	3
B－Injury Crashes		1							1								1		1	1	3
C－Injury Crashes				1															0	1	1
PDO Crashes		1		5					2				1						4	3	9

LOCAL SEGMENTS BENEFIT COST ANALYSIS										
BENEFIT CALCULATIONS				COUNTERMEASURE COST CALCULATIONS						
COUNTERMEASURE		CMF＊	Crash Type affected by this improvement	Unit Cost	Quantity	Units	Total Cost	Service Life	Present worth	EUAC＊＊
4．1．3．s1．1－Pavement Treatments－Add or Widen Paved Shoulder		0.96	ROR，FO，HO，OVT，SOD，SSD	\＄83，433	7.6	Miles	\＄634，091	15	\＄634，091	\＄57，050
4．1．9．81．1－Pavement Treatments－Install Rumble Strips（Shoulde）		0.67	Fo，ovt	\＄14，063	7.6	Miles	\＄106，882	8	\＄184，979	\＄16，650
4．6．7．S1．1－Curves－Install chevron signs on horizontal curves		0.84	FO，HO，OtherNC，Othero，OVT，SSD，SOD	\＄19，500	1	Unit Qnty	\＄19，500	10	\＄32，674	\＄2，950
			All							
TOTAL BENEFIT	\＄244，200					TOTA				\＄76，650
BENEFIT／COST	3.20		ANNUAL NUMBER OF FATALITIES POTENTAL	VENTED	0.00		TOTAL	TALITIES PR	EVENTED	0.00

＊CMF＝Crash Modification Factor
＊＊EUAC＝Estimated Uniform Annual Cost

Project: Pyatt-Cutler Road
Description: Pre-Design Estimate

Project \#:
Municipality:
Road Dist: Nine
County: Perry
Section:

Checked By:	SPH (CMT)


```
Please provide a detailed cost estimation for all countermeasures along with this summary shee
The combined effect of multiple countermeasures is inited to 0.60 or the smallest CMF
```

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIAL CASE		$\stackrel{\text { ¢ّ }}{\text { ¢ }}$
赵		$\stackrel{\text { \％}}{\text { ¢ }}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{⿺ ⿻} \end{aligned}$		$\begin{aligned} & \stackrel{5}{E} \\ & \substack{ \pm \\ \hline \\ \hline} \end{aligned}$												㿥	$\begin{aligned} & \stackrel{0}{E} \\ & E \\ & \frac{5}{\bar{L}} \end{aligned}$		
Crash Severity	ALL	AG	AN	FO	но	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes																			0	0	0
A－Injury Crashes				2															2		2
B－Injury Crashes																			0	0	0
C－Injury Crashes												1							1	0	1
PDO Crashes				2				1											2	1	3

＊CMF＝Crash Modification Factor
＊＊EUAC＝Estimated Uniform Annual Cost

Project: Pyatt-Cutler Road
Description: Pre-Design Estimate

Estimate By:	BMB (CMT)	$5 / 20 / 2020$
Checked By:	SPH (CMT)	$5 / 20 / 2020$

Project \#:
Municipality: Road Dist: Nine County: Perry
Section:


```
Please provide a detailed cost estimation for all countermeasures along with this summary shee
The combined effect of multiple countermeasures is inited to 0.60 or the smallest CMF
```

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIAL CASE		$\stackrel{\text { ¢ّ }}{\text { ¢ }}$
赵		$\stackrel{\text { \％}}{\text { ¢ }}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{⿺ ⿻} \end{aligned}$		$$											$\begin{aligned} & \text { g } \\ & \substack{5 \\ \vdots \\ \hline} \end{aligned}$	㿥	$\begin{aligned} & \stackrel{0}{E} \\ & \underline{E} \\ & \text { 䯧 } \end{aligned}$		
Crash Severity	ALL	${ }^{\text {AG }}$	AN	FO	но	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes																			－	0	0
A－Injury Crashes				2															1	0	2
B－Injury Crashes				1												1			0	1	2
C－Injury Crashes				1															0	1	1
PDO Crashes				3											1				1	1	4

LOCAL SEGMENTS BENEFIT COST ANALYSIS								
BENEFIT CALCULATIONS			COUNTERMEASURE COST CALCULATIONS					
COUNTERMEASURE	CMF＊	Crash Type affected by this improvement \quad Unit Cost	Quantity	Units	Total Cost	Service Life	Present worth	EUAC＂＊
4．1．3．51．1－Pavement Treatments－Add or Widen Paved Shoulder	0.96	ROR，FO，HO，OVT，SOD，SSD $\$ 83,357$	9.4	Miles	\＄783，559	15	\＄783，559	\＄70，500
4．1．9．S1．1－Pavement Treatments－Install Rumble Strips（Shoulder）	0.67	Fo，ovt	9.4	Miles	\＄136，466	8	\＄236，181	\＄21，250
		All						
		All						
TOTAL BENEFIT $\$ 73,800$								\＄91，750
BENEFIT／COST 0.80		ANNUAL NUMBER OF FATALITIES POTENTIALLY PREVENTED	0.00		TOTAL	TALITIES PR	EVENTED	0.00

＊CMF＝Crash Modification Factor
＊＊EUAC＝Estimated Uniform Annual Cost

Project: Pyatt-Cutler Road
Description: Pre-Design Estimate

Estimate By:	BMB (CMT)	$5 / 20 / 2020$
Checked By:	SPH (CMT)	$5 / 20 / 2020$

Project \#:
Municipality:
Road Dist: Nine
County: Perry
Section:

CASE_ID	YR	INJ	FAT	COLL_ TYPE	WEATHER	LIGHT	SURF_ COND	MILE DRIVER_1	VEH1_TYPE	VEH1_ DIR	VEH1_ MANUV	VEH1_ EVNT1	VEH1_LOC1	VEH1_EVNT2	VEH1_LOC2	VEH1_EVNT3	VEH2 DIR	VEH2_ EVNT1	VEH2_LOC1	REC_TYPE	COORD	YCOORD
201400197430	14		0	0 Rear End	Rain	Daylight	Wet	0.00 Normal	Pickup	West	$\begin{aligned} & \text { Skid/Ctrl } \\ & \text { Loss } \end{aligned}$	Mtr Veh In Traffic	On Pvmt (Roadway)				West	Mtr Veh In Traffic	On Pvmt (Roadway)	PD	2461573.255670	488722.140643
201400131906	14		0	0 Fixed Object	Clear	Daylight	Snow or Slush	0.54 Normal	Passenger	West	$\begin{aligned} & \text { Skid/Ctrl } \\ & \text { Loss } \end{aligned}$	Ran Off Roadway	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left			Mtr Veh In Traffic		PD	2464338.980970	487950.315441
201400095589	14		1	0 Fixed Object	Clear	Daylight	Ice	0.65 Normal	Passenger	East	Straight Ahead	Ran Off Roadway	Off Pvmt Left	Tree or Shrub	Off Pvmt Left			Mtr Veh In Traffic		C-Injury	2464881.118030	487863.183839
201400458777	14		1	0 Sideswipe Opp Dir	Cloudy/ Overcast	Daylight	Wet	0.80 Fatigued	Passenger	West	Straight Ahead	Mtr Veh In Traffic	Off Pvmt Left				East	Mtr Veh In Traffic	Off Pvmt Left	A-Injury	2465661.364840	487891.082121
201701363549	17		0	0 Fixed Object	Snow	Darkness	Snow or Slush	1.54 Normal	Pickup	West	Negotiate A Curve	Ran Off Roadway	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left	Utility Pole		Mtr Veh In Traffic		PD	2468454.839390	485612.130362
201400084836	14		0	0 Overturn	Clear	Darkness	Dry	1.70 Fatigued	Passenger	East	Straight Ahead	Ran Off Roadway	Off Pvmt Right	Overturn	Off Pvmt Left			Mtr Veh In Traffic		PD	2469319.723000	485557.200153
201601473437	16		0	0 Angle	Clear	Daylight	Dry	1.76 Normal	Van/Mini- Van	South	Starting In Traffic	Mtr Veh In Traffic	Intersection				East	Mtr Veh In Traffic	Intersection	PD	2469620.997540	485563.304107
201501326279	15		1	0 Angle	Cloudy/ Overcast	Daylight	Wet	1.76 Normal	Passenger	South	Straight Ahead	Mtr Veh In Traffic	On Pvmt (Roadway)				West	Mtr Veh In Traffic	On Pvmt (Roadway)	A-Injury	2469620.999870	485563.841614
201400390410	14		1	0 Angle	Clear	Daylight	Dry	1.76 Normal	Passenger	North	Straight Ahead	Mtr Veh In Traffic	On Pvmt (Roadway)				West	Mtr Veh In Traffic	On Pvmt (Roadway)	B-Injury	2469621.000030	485563.876394
201701425287	17		1	0 Fixed Object	Clear	Daylight	Dry	1.76 Normal	$\begin{aligned} & \text { Motorcycle } \\ & \text { (+150cc) } \end{aligned}$	East	Straight Ahead	Ran Off Roadway	Off Pvmt - Right	Ditch/Embank ment	Off Pvmt Right	Fence				A-Injury	2469621.000030	485563.876394
201601310598	16		0	0 Other Object	Sleet/ Hail	Daylight	Ice	3.79 Normal	Passenger	East	$\begin{aligned} & \text { Skid/ CtrI } \\ & \text { Loss } \end{aligned}$	Ran Off Roadway	Off Pvmt Right							PD	2480333.863380	485436.193803
201601456407	16		3	0 Fixed Object	Clear	Dawn	Dry	5.00 Other	Passenger	East	Straight Ahead	Other Fxd Obj	Off Pvmt Right	Tree or Shrub	Off Pvmt Right					A-Injury	2486727.818620	485354.927636
201400088380	14		2	0 Parked Vehicle	Clear	Darkness	Dry	Alcohol 5.01 Impaired	Pickup	East	Straight Ahead	Hit Park Veh	On Pvmt (Roadway)				East	Mtr Veh In Traffic	On Pvmt (Roadway)	C-Injury	2486784.854190	485352.801364
201601349562	16		0	0 Fixed Object	Cloudy/ Overcast	Darkness	Ice	5.37 Normal	Pickup	West	$\begin{aligned} & \text { Skid/ CtrI } \\ & \text { Loss } \end{aligned}$	Other Fxd Obj	Off Pvmt Left							PD	2488664.545660	485312.187884
201501326298	15		1	0 Fixed Object	Clear	Darkness	Dry	5.68 Normal	Van/ Mini- Van	West	$\begin{aligned} & \text { Skid/ CtrI } \\ & \text { Loss } \end{aligned}$	Ran Off Roadway	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left					A-Injury	2490322.900490	485306.595229
201400233504	14		0	0 Fixed Object	Rain	Dawn	Wet	5.95 Normal	Passenger	West	Straight Ahead	Ran Off Roadway	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left					PD	2491733.991480	485300.764259
201801100120	18		0	0 Fixed Object	Clear	Daylight	Dry	6.92 Normal	SUV	West	Negotiate A Curve	Other Fxd Obj	Off Pvmt Right							PD	2496844.176740	485291.216189
201701388051	17		0	0 Overturn	Clear	Darkness	Dry	Been 7.47 Drinking	Pickup	West	Negotiate A Curve	Overturn	Off Pvmt Right	Ditch/ Embankment	Off Pvmt Right					PD	2498560.333210	487593.091573
201701363547	17		0	0 Fixed Object	Snow	Darkness		Other/ 7.53 Unknown	Passenger	West	Straight Ahead	Ran Off Roadway	Off Pvmt Right	Ditch / Embankment	Off Pvmt Right	Tree or Shrub				PD	2498833.942430	487734.732611
201701454952	17		1	0 Overturn	Clear	Darkness	Dry	7.55 Normal	SUV	Northwest	U-Turn	Ran Off Roadway	Off Pvmt Right	Overturn	Off Pvmt Right	Ditch/ Embankment				B-Injury	2498936.327100	487763.646021
201400062631	14		0	0 Fixed Object	Snow	Daylight	Snow or Slush	7.57 Normal	Pickup	East	Skidd/ Ctrl Loss	Ran Off Roadway	Off Pvmt Left	Fence	Off Pvmt Left	Overturn				PD	2499030.108890	487774.514388
201701118453	17		1	0 Turning	Clear	Daylight	Wet	8.04 Normal	SUV	East	Avoid Veh/ Obj	Mtr Veh In Traffic	Intersection				East	Mtr Veh In Traffic	Intersection	B-Injury	2501481.498970	487802.250198
201400083385	14		2	0 Fixed Object	Clear	Darkness	Dry	9.11 Other	SUV	West	Unknown	Ran Off Roadway	Off Pvmt Left	Culvert	Off Pvmt Right	Overturn				A-Injury	2507172.462700	487784.993953

CASE_ID	YR	INJ	FAT	COLL_ TYPE	WEATHER	LIGHT	SURF COND	MILE	DRIVER_1	VEH1_TYPE	$\begin{aligned} & \text { VEH1_ } \\ & \text { DIR } \end{aligned}$	VEH1_ MANUV	VEH1_ EVNT1	VEH1_LOC1	VEH1_EVNT2	VEH1_LOC2	VEH1_EVNT3	$\begin{aligned} & \text { VEH2_ } \\ & \text { DIR } \end{aligned}$	VEH2_ EVNT1	VEH2_LOC1	REC_TYPE	XCOORD	YCOORD
201400228561	14		1	0 Sideswipe Opp Dir	Clear	Daylight	Dry		Other/ Unknown	Passenger	East	Straight Ahead	Mtr Veh In Traffic	On Pvmt (Roadway)				West	Mtr Veh In Traffic	On Pvmt (Roadway)	B-Injury	2507289.207520	487786.077805
201400458508	14		1	0 Fixed Object	Rain	Daylight	Wet	9.52	Normal	SUV	East	Straight Ahead	Ran Off Roadway	Off Pvmt Right	Other Pole or Post	Off Pvmt Right	Ditch/ Embankment				B-Injury	2509290.557980	487804.658213
201400407765	14		1	0 Fixed Object	Rain	Daylight	Wet	10.11	Normal	Passenger	East	Straight Ahead	Ran Off Roadway	Other	Ditch/ Embankment	Other					C-Injury	2512442.363490	487801.690455
201601404550	16		0	0 Fixed Object	Clear	Daylight	Dry	10.1	Normal	Other	West	Backing	Ran Off Roadway	Off Pvmt - Right	Ditch/ Embankment	Off Pvmt - Right	Other Fixed Object				PD	2512742.521600	487799.791008
201701470955	17		0	0 Sideswipe Same Dir	Clear	Daylight	Dry	10.43	Normal	Motorcycle (+150cc)	West	Pass/ Overtake	Mtr Veh In Traffic	On Pvmt (Roadway)				West	Mtr Veh In Traffic	On Pvmt (Roadway)	PD	2514108.487600	487796.458063
201801028247	18		0	0 Fixed Object	Clear Fog/	Daylight	Ice	11.43	Normal	Passenger	East	Straight Ahead	Ran Off Roadway	Off Pvmt Left	Other Pole or Post	Off Pvmt - Right					PD	2519422.411620	487762.523221
201400314675	14		0	0 Fixed Object	Smoke/ Haze	Darkness	Dry	11.91	Fatigued	Passenger	East	Straight Ahead	Ran Off Roadway	Off Pvmt Left	Culvert	Off Pvmt Left	Ditch/ Embankment				PD	2521939.152610	487676.202318
201701416479	17		3	0 Fixed Object	Clear	Daylight	Dry	12.23	Other/ Unknown	Passenger	West	Skid/ Cntrl Loss	Ran Off Roadway	Off Pvmt Left	Culvert	Off Pvmt Left	Ditch/ Embankment				A-Injury	2523607.562610	487600.635095

West Project Limits -- shoulder and warning signs (0.00-1.85) PRIMARY countermeasures East Project Limits - -- shoulder and warning signs (6.15-8.10) PRIMARY countermeasures West Project Limits -- shoulder widening (1.85-6.15) SUPPLEMENTAL 1 countermeasure
East Project Limits -- shoulder widening (8.10-12.80) SUPPLEMENTAL 2 countermeasur

INTRODUCTION

Pyatt-Cutler Road was identified as the highest ranked segment within Perry County as part of a Greater Egypt Regional Planning and Development Commission safety analysis using the most current crash dataset (2014-2018). The Cutler-Trico Road intersection within the study limits was also ranked high on the local priority list using the same dataset. Safety analysis using 5 years of crash data (2011-2015) was completed by IDOT in 2017 and identified the following Safety Tier classifications at similar locations:

1. A 2.5 mile segment of Pyatt-Cutler Road was classified as one of 3 High Safety Tier segments. The 2017 segment was located between the Denmark Road/ Panda Bear Road intersection (5.02) and the Red Squirrel Road intersection (7.52). No segments were classified in the Critical Safety Tier.
2. The Cutler-Trico Road and Pyatt-Cutler Road intersection (1.75) was classified as the only low Safety Tier location. One other intersection in Perry County was classified as a medium Safety Tier location (Shamrock Road at Bob White Road).

The priority rankings using 2014-2018 crash data and the correlation to the 2017 Safety Tier lists were factors to an application for safety funding on Pyatt-Cutler Road as shown in Figure 1.

EXISTING CONDITIONS

Pyatt Cutler Road (PCR) is a county route (CR 4) providing east/west connectivity between IL 4 and IL 13/ IL 127/ IL 152. The roadway width is 22 feet with a painted centerline and edge lines for the 13.0 -mile length. An aggregate shoulder averages 1-2 feet. The legal speed is 55 MPH. Intermittent No Passing zones exist within the study area due to intersections, horizontal curves, or rolling terrain.
A factor that contributes to the safety performance of the corridor is 4-6 inch drop offs along the edge of pavement. Rutting occurs along the inside of horizontal curves and on straight segments due in part to lane widths of 11 feet. County maintenance forces are not able to retain aggregate shoulders due to trucks on the high-speed route resulting in rutting of non-paved surfaces. Truck trailers regularly encroach onto the aggregate shoulders especially when meeting oncoming trucks. The 2019 ADT is 550 vehicles of which 80 are trucks.

Land use is a mix between residential, industrial, and undeveloped parcels. Items of interest shown on Figure $\mathbf{1}$ are supplemented with the following information:

1. A rail transfer terminal/ trucking company is located on the west end of the corridor which contributes to a truck percentage of 14.5%.
2. The Trico-Cutler Road (TCR) intersection is a 2-way stop controlled intersection. A vertical curve on the south leg of TCR restricts sight distance of the stop condition within 270 feet of PCR.
3. Pyramid State Park is located on the east end of the corridor. The entrance is located 2.5 miles from the IL 13/ IL 127/ IL 152 intersection. The 2019 ADT is 600 vehicles having a truck percentage of 5%.
4. Horizontal curves may have design speeds less than 55 MPH if superelevation is less than 8%.

PHOTO 2: NB TRICO-CUTLER RD (500 FT FROM PYATT-CUTLER RD)

PHOTO 3: DROP OFF WEST OF RAIL TRANSFER TERMINAL

PHOTO 4: MEETING TRUCK EAST OF RAIL TRANSFER TERMINAL (NO AGG SHOULDER)

PHOTO 5: DROP OFF EAST OF PYRAMID STATE PARK (TYPICAL CONDITION)

The Emphasis Area analysis in 2017 identified Road Departure crashes on local and county routes as the most frequent crash type (73.7\%) resulting in Type A injuries.

SAFETY ANALYSIS

A total of 31 crashes occurred within the study area over a 5-year period (2014-2018). The frequency of crashes by year is summarized on Figure 2. No fatal crashes occurred over the 5year period.

Injury crashes represent 48 percent of the total crashes. The injury crashes comprise 7 Type A injuries, 5 Type B injuries, and 3 Type C injuries.

Road departure crashes (fixed object, overturning, sidewipe-meeting) comprise 74% of all crashes within the study area as shown in Figure 3. The subset of only Road Departure crashes resulted in 6 Type A injuries, 3 Type B injuries and 2 Type C injuries. The primary countermeasure will address Road Departure crashes due to crash frequency and severity. Low cost countermeasures can be implemented to address other crash types such as angle crashes.

FIGURE 3: CRASH FREQUENCY BY TYPE
 Note that angle crashes associated with the IL 13/ IL 127/ IL 152 intersection were excluded from the database. Angle crashes (3) at the Trico-Cutler Road intersection remained within the dataset. In addition to the crashes within the 5-year dataset (20142018), another angle crash involving a NB vehicle failing to yield and being struck by an eastbound semitruck occurred on 5/26/20.

Figure 4 shows the location of crashes at 0.5-mile intervals by crash type. The overturning crashes occurred within segments having horizontal curves. The distribution of Road Departure crashes is balanced except for the 3.0 to 5.0 segment without crashes between 2014 and 2018 . The crash frequency and location vary which favors a systemic solution.

FIGURE 4: LOCATION FREQUENCY BY CRASH TYPE

The dataset was expanded to include 15 years of data between 2005 and 2019 to assess long term trends. The output from the 15 -year dataset (Figure 5) was compared to the current 5 -year dataset shown on Figure 4. The segments having lower crash frequencies over the 5 -year time period is similar to the crash frequency over a 15 -year time period especially for the 3.0-5.0 segment. Other than the 3.0-5.0 gap,

Figure 5 indicates that the crashes are not focused at a specific location but rather are distributed across the entire length of the corridor. This information may help determine where more targeted countermeasures can be implemented even if the countermeasures are systemic by design.

FIGURE 5: LOCATION FREQUENCY BY SEVERITY

COUNTERMEASURES

Countermeasures are identified that improve safety performance by focusing on the crash types having the greatest potential for mitigation. The proposed countermeasures are directly linked to historical crash patterns. While the low and moderate cost countermeasure are systemic in nature, the countermeasures are targeted to segments having a higher frequency of crashes. Three primary countermeasures are proposed as summarized below.

DUAL STOP SIGN COUNTERMEASURE

A short-term countermeasure enhances the stop sign on both Trico-Cutler Road approaches to mitigate 3 angle crashes at the subject intersection. Three upgrades to the stop signs are summarized below:

- Install dual stop signs on both approaches of Trico-Cutler Road. The existing traffic control consists of a single, right side mounted stop sign which meets Manual of Uniform Traffic Control Devices (MUTCD) guidance. Dual stop signs are recommended to mitigate angle crashes.
－Stack 2 stop signs on a frangible wood post on the NB approach of Trico－Cutler Road．The profile of NB Trico－Cutler Road obstructs the visibility of the stop signs at the intersection．Stacking 2 stop signs will provide greater visibility of the stop signs before the crest of the vertical curve．
－Relocate stop ahead warning signs on the NB Trico－Cutler Road approach from 475 feet to 350 ft in accordance with Table 2C－4 of the MUTCD．

Table 2C－4．Guidelines for Advance Placement of Warning Signs

Posted or 85th－ Percentile Speed	Advance Placement Distance ${ }^{\text {＇}}$								
	Condtion A：	Condition B：Deceleration to the listed advisory speed（mph）for the condition							
	changing in homy tratic ${ }^{2}$	0^{2}	10^{4}	20^{4}	30^{4}	40^{4}	50^{4}	60^{4}	70^{4}
20 mph	225 t	100π	N／A ${ }^{\text {S }}$	－	－	－	－	－	－
25 mph	325 ${ }_{\text {\％}}$	100 mr	N／AS	N／A	－	－	－	－	－
30 mph	460\％	100 tr	N／A ${ }^{5}$	NA ${ }^{5}$	－	－	－	－	－
35 mph	565 tt	100 \＃＊	N／A ${ }^{\text {S }}$	NA ${ }^{\text {e }}$	N／A	－	－	－	－
40 mph	670\％	125 ft	$100 \mathrm{~m}^{6}$	100 tr	N／A	－	－	－	－
45 mph	775 需	175 fl	125 ft	100 tr	100）${ }^{4}$	N／A	－	－	－
50 mph	885 \％	250 ft	200 ft	175 ft	125 客	$100 \mathrm{mt}^{5}$	－	－	－
55 mph	980 tt	325 tr	275 ft	225 \＃1	200\％	125 ft	N／4 ${ }^{\text {c }}$	－	－
65 mph	1，100 f	400 fl	350 ft	325 fl	275 勫	200 ft	100 n	－	－
65 mph	1.200 ft	475 f1	450 tt	400 fl	350年	275 ft	200 ff	$100 \pi^{5}$	－
70 mph	1.250 ft	550 ft	625 ft	500 ft	450类	375 ft	276 ft	150 t	－
75 mph	1，350 ft	650 ft	625 ft	600 Ht	550 \％	475 ft	375 ti	250 ft	100 tr

CURVE WARNING SIGN COUNTERMEASURE

All overturning crashes occurred within the proximity of two locations having reverse horizontal curves separated by more than 600 feet．

1．Mile 1.5 to 2．0．The horizontal curves having a radius of 1,150 feet accommodates a $2,300 \mathrm{ft}$ shift of the Pyatt－Cutler Road alignment．No chevrons exist at this location despite the existing alignment being less than 55 MPH ．

2．Mile 6.8 to 7．8．The horizontal curves having a minimum radius of 1,050 feet accommodates a $2,600 \mathrm{ft}$ shift of the Pyatt－Cutler Road alignment．Curve warning signs exist on the approaches to the horizontal curves．No advisory speed plaque exists．A limited number of chevrons exist．

A short－term countermeasure would be to install or upgrade curve warning signs and chevrons at horizontal curves to provide a warning to drivers about the edge of pavement．The installation of curve warning signs is a proven safety countermeasure．The following countermeasures for the reverse curves at the west end of the study area are recommended：
－Install curve warning，speed advisory plaques（if applicable），and／or chevrons in accordance with Table 2C－5 of the MUTCD for the 2 sets of reverse curves．Chevrons are recommended even if the advisory speed is 10 MPH less than the speed limit．A ball bank study to confirm the advisory speed at this location is recommended．

- Upgrade reverse curve warning, speed advisory plaques, and/or chevrons in accordance with Table 2C-5 of the MUTCD for the curves near Mile 6.8 to 7.8. A ball bank study to confirm the advisory speed at this location is recommended.

Table 2C-5. Horizontal Alignment Sign Selection

Type of Horizontal Alignment Sign	Difference Between Speed Limit and Advisory Speed				
	5 mph	10 mph	15 mph	20 mph	25 mph or more
Turn (W1-1), Curve (W1- 2), Reverse Turn (W1-3), Reverse Curve (W1-4), Winding Road (W1-5), and Combination Horizontal Alignment/Intersection (W10-1) (see Section 2C. 07 to determine which sign to use)	Recommended	Required	Required	Required	Required
Advisory Speed Plaque (W13-1P)	Recommended	Required	Required	Required	Required
Chevrons (W1-8) and/or One Direction Large Arrow (W1-6)	Optional	Recommended	Required	Required	Required
Exit Speed (W13-2) and Ramp Speed (W13-3) on exit ramp	Optional	Optional	Recommended	Required	Required

Note: Required means that the sign and/or plaque shall be used, recommended means that the sign and/or plaque should be used, and optional means that the sign and/or plaque may be used.

See Section 2C. 06 for roadways with less than 1,000 ADT.

- Relocate advance warning signs no more than 225 feet in advance of the curves to be consistent with Table 2C-4 of the Manual of Uniform Traffic Control Devices (MUTCD). Existing signs are located 500 feet in advance of the horizontal curves. Section 2C. 05 emphasizes that signs are not placed too far in advance of the condition.

PAVED SHOULDER COUNTERMEASURE

The frequency of crashes occurring beyond the limits of the horizontal curves suggests other factors contribute to the safety performance on Pyatt-Cutler Road (i.e., edge of pavement drop offs). A mediumterm countermeasure reconstructs the aggregate shoulder as a paved shoulder to address pavement drop offs in conjunction with longitudinal rumble strips at the following locations:

- IL4 to Trico Cutler Road (0.00 to 1.85).
- Union School Road to Whitetail Road (6.15 to 8.10)

Drop offs at the edge of pavement occur where the aggregate shoulder has been dispersed or rutted due to higher speed vehicles driving on a non-improved surface. The drop off at the edge of pavement has been an on-going maintenance issue due, in part, to the high speeds and lack of paved shoulders.

The following targeted countermeasures are proposed on the Pyatt-Cutler Road corridor:

- Replace the aggregate shoulder with a 2 ft paved shoulder (full depth).
- Add longitudinal rumble strips to increase driver attention.

Implementing the proposed countermeasures as part of separately funded pavement rehabilitation project on rural, high speed roadways is recommended as a best practice to leverage safety funds. The proposed countermeasures are to be constructed in conjunction with a funded resurfacing project using FY2022 STR funds from IL 4 to Union School Road (mile 6.25). Combining shoulder improvement projects as part of a larger pavement rehabilitation project can achieve an economy of scale.

Context Sensitive Design (CSD) principles are applicable to the Pyatt-Cutler Road corridor due to the impacts associated with design guidance provided by the BLR for reconstruction
 projects. The development of a context sensitive countermeasure that is systemic is based guidance from the National Cooperative Highway Research Program (NCHRP) Report 480: A Guide to Best Practices for Achieving Context Sensitive Solutions (2002) and the AASHTO Highway Safety Design and Operations Guide (1997).

Of the broad categories of transportation issues that are most applicable to the Pyatt-Cutler Road study area, improving safety performance is the purpose of the project. Two aspects are to be addressed when evaluating safety countermeasures: nominal and substantive safety. Both nominal and substantive safety are important to include in the decision-making process.

1) Nominal Safety - A countermeasure's adherence to design criteria and/or standards as published in the AASHTO policy, the Manual of Uniform Control Devices (MUTCD) and/or the BLR. The existing typical section complies with IDOT design criteria for shoulder widths (BLR Figure 33-3B). The preferred design criteria for reconstruction projects (BLR Figure 32-2B) are not met.
2) Substantive Safety - The actual performance of the Pyatt-Cutler Road corridor is compared to similar facilities to assess relative performance. Crash statistics for corridors having a similar typical section such as Old DuQuoin Road does not experience the number of crashes or appear on the 2017 Safety Tier for segments.

In the case of Pyatt Cutler Road, nominal safety criteria (i.e., 4 ft shoulders) are generally met as noted in Item 1. However, the substantive safety performance of Pyatt Cutler Road is worse than comparable roadways due to the presence of pavement drop offs. Figure 6 shows a decision matrix of nominal and substantive safety countermeasures.

The proposed typical section is consistent with the guidance in the IDOT Bureau of Local Roads \& Streets manual (BLR) in order to maximize the length of safety related improvements within the existing ROW width (70 feet). Targeted safety countermeasures are recommended since the existing typical section is consistent with Figure 33-3B of the BLR for roadways having an ADT 400-750 vehicles:

- Traveled way width of 22 feet
- Shoulder width of 4 feet having an aggregrete or turf shoulder
- Side slopes having front slopes of $1 \mathrm{~V}: 3 \mathrm{H}$ in cut sections

Figure 7 shows the proposed typical section for Pyatt-Cutler Road.

FIGURE 6: APPLYING SAFETY TO PROBLEM DEFINITION AND SOLUTIONS

FIGURE 7: PYATT CUTLER ROAD COUNTERMEASURE

BENEFIT COST ANALYSIS

The PRIMARY countermeasures while systemic are limited to a total segment length of 3.80 miles (2 segments) on Pyatt-Cutler Road. The project data used to perform the benefit cost analysis is based on the following assumptions.

1. The crash dataset used to calculate the benefit cost ratio for the PRIMARY countermeasures included two segments: mile 0.00 to 1.85 including the Trico-Cutler Road intersection; mile 6.15 to 8.10 including the Union School Road intersection and the Whitetail Road intersection. The subset includes 16 crashes. Note that STR funds are secured for resurfacing of Pyatt-Cutler Road for FY 2024 between Union School Road and IL 13/ IL 127/ IL 152.
2. The CMF for Install Chevron Signs is proposed since signs do not exist or a limited number exists on the horizontal curves having a radius less then 1,200 feet. The addition of curve warning signs is applicable on 4 horizontal curve (2 pairs of reverse curves) within the study area.
3. Upgrading to a 2 ft paved shoulder along the 3.80 mile segment is proposed to improve safety performance of the existing roadway having an effective width of 22 feet $+/-$. The cost estimate include minor regrading of shoulders within existing right of way. The improvements are to be constructed in conjunction with a STR funded resurfacing project within similar project limits.
4. Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the travel lane as done for the existing condition. Pyatt-Cutler Road is a not a designed bicycle route. No bicycle crashes were documented as part of the crash analysis.

The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies not limit themselves to use longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as Dix Irvington Road. Note that no bicycle crashes were reported during the 5 -year study period and Pyatt Cutler Road is not a designated bicycle route.

Non-performing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

The total cost for the overall 3.8 mile segment is estimated to be $\$ 760,000$ with a Benefit Cost ratio of 3.20, calculated from the IDOT HSIP BOC analysis tool. A detailed cost estimate and BOC calculations are included as an attachment to this report.

Shoulder improvements would benefit other segments between the reverse curves within the study limits. Therefore, the addition of a 2 ft paved shoulder is proposed to further improve safety performance. The PRIMARY countermeasures are limited to the reverse curves on the west and east ends of the project. The following SUPPLEMENTAL improvements are proposed if additional funds are available to further mitigate crashes within the following segments:

1. Two Type A crashes between mile 1.85 and mile 6.15. This segment is located within the resurfacing limits of Pyatt-Cutler Road using STR funds for FY 2022. Improvements within this segment is identified as the SUPPLEMENTAL 1 countermeasure.
2. Two Type A crashes and two Type B crashes between mile 8.10 and mile 12.8. This segment is located within the resurfacing limits of Pyatt-Cutler Road using STR funds for FY 2024. Improvements within this segment is identified as the SUPPLEMENTAL 2 countermeasure.

These improvements are proposed in addition to the PRIMARY countermeasures listed in the Benefit Cost Analysis section of the safety study.

- Upgrading to a 2 ft paved shoulder is proposed to improve safety performance of the existing roadway having an effective width of 21 feet $+/$-. The cost estimate include regrading of shoulders within existing right of way to be more compliant with BLR Figure 32-2B. The improvements are to be constructed in conjunction with STR funded resurfacing projects within the project limits.
- Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the travel lane as done for the existing condition. Pyatt Cutler Road is a not a designated bicycle route. No bicycle crashes were documented as part of the crash analysis. The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies not limit themselves to use longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as Dix Irvington Road. Note that no bicycle crashes were reported during the 5 -year study period and Dix Irvington Road is not a designated bicycle route.

Non-performing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

These SUPPLEMENTAL countermeasures eliminate gaps between the reverse curves on either end of the study area. The paved shoulders are considered to be more systemic safety solutions.

1. The total cost for the 4.3 mile segment of the SUPPLEMENTAL 1 project is estimated to be $\$ 840,000$ with a Benefit Cost ratio of 0.70 , calculated from the IDOT HSIP BOC analysis tool. A separate cost estimate and benefit cost analysis are included as part of this funding application and is labeled as a SUPPLEMENTAL 1 countermeasure.
2. The total cost for the 4.7 mile segment of the SUPPLEMENTAL 2 project is estimated to be $\$ 920,000$ with a Benefit Cost ratio of 0.80 .

Greater Egypt Safety Study

APPENDIX 01: JAC N. MARION STREET

Illinois Department of Transportation

2300 South Dirksen Parkway / Springfield, Illinois / 62764

August 21, 2020
Mr. Mitch Burdick
Jackson County Engineer
1200 Enterprise Avenue
Murphysboro, Illinois 62966
Mr. Mitch Burdick,
The Illinois Department of Transportation is pleased to inform you that your project has been selected for local Highway Safety Improvement Program (HSIP) funding. The project, identified by the Department as HSIP \#202012019, involves re-profiling railroad crossings within or near horizontal curves, paved shoulders with longitudinal rumble strips, and curve warning signs along North Marion Street between Glade Lane and Fisher Street. Included in this approval is the combined Alternative 1 and Alternative 2 proposals submitted as part of the application package. Congratulations on your successful application.

The federal HSIP commitment for this project will not exceed $\$ 644,022$. The deadline for this award to be federally authorized is October 6, 2023 or funds will be rescinded.

Please contact Mr. J. Travis Emery, District 9 Local Roads Engineer at (618) 351-5260, or at James.Emery@illinois.gov to discuss program requirements and preparation of any agreements and / or contracts. Projects located within a Metropolitan Planning Organization (MPO) planning boundary are required to be listed in the local MPO's Transportation Improvement Program (TIP). Questions regarding the HSIP may be directed to Ms. Melinda Kos in the Central Bureau of Local Roads and Streets by telephone at (217) 785-5178.

All HSIP grant recipients must be registered with the State of Illinois to comply with the Grant Accountability and Transparency Act (GATA) 30 ILCS 708. Full GATA compliance is required, including the completion of all pre-award GATA paperwork. You may send inquiries to the Central Bureau of Local Roads and Streets or to DOT.GATA@illinois.gov for further assistance.

An important element of the HSIP is feedback on the safety performance of improved locations. Review and reporting of the crash history at this project location before and after the completion of construction will involve your agency. IDOT will coordinate this review approximately four years after construction is completed.

Sincerely,

Stephane B. Seck-Birhame, P.E., PTOE
Acting Bureau Chief of Local Roads and Streets
cc: Alan Ho, FHWA - Illinois Division
Cynthia Watters, IDOT - Bureau of Safety Programs and Engineering
J. Travis Emery, IDOT District 9

File

PRONECT DESCXPMON - PRONECT DATA NPUT (LOCML SEGMENTS)

LOCAL SEOMENTS CRASH SEVERTY DISTRIBUTION BY CRASH TYPE FOR AMALYSIS PERIOD

PROJECT DESCRIPTION - PROJECT OATA INPUT (LOCAL SEGMENTS)
$\pm=$

LOCAL SEGMENTS CRASH SEVERTY DSTRBUTION BY CRASH TYPE POR AKMYYSL PERIOD
LOCM SEGMENTS BENEIT COST ANALYSIS
COST ESTIMATE - NORTH MARION STREET - ALTERNATIVE 1+2

Jackson County

Department of Highways
1200 Enterprise Avenue, Murphysboro, Illinois 62966
618.684.4141 www.jacksoncounty-il.gov

North Marion Street Improvement Project

Anticipated Project Timeline

Project Selection Fall 2020
Start Phase I/ Phase II December 2020
Purchase ROW December 2021
Project Utility Adjustments January 2021
Construction LettingApril 2022
Construction Contract Completion May 2022
Construction Start June 2022
Construction Completion August 2022Project Close-out

 2573734.034910
2573734.034910 FO
$P O$ $\frac{2}{3}$
$\frac{2}{3}$ 2573733.379200
2573730.865510
 2573724.714220 2573724.234730 2573724.099550 2573698. 127550 Etraeg csonge ocs6soltscesc $2572243.957740 \quad 394100.655331$ 9tELTEDOSRES 00S7LSZTBLCSR

 A.heary
injury
ratal
10 Nanda.v Nunfu: 2 $\frac{2}{3}$ $\frac{5}{3}$ \& 0

Mur Veh in On homt
Traffk (Roasway) Traffic (Rosfuay) Moadway Other Mtr Veh is
Traffic

Traffic imtersection
Mtr Veh is On Pume

 Rean of off Pumt. Roadway sight Tan of Off Pemt-
 $\frac{2}{2}$
$\frac{3}{4}$
$\frac{3}{4}$ Ran OH Off Pome
Rnoblway Blight
 Noy Veh in orf Pums.
Tratic Foght (Venpecyl suel
unva uo ul tar nas - zunino pxysupo $\frac{\text { 首 }}{8} \frac{1}{8}$

SURT
_COND MLE ORNER_2

TEAR UNJ FAT COL_TYPE WEATHER UGRTING
201501428746 is

CASE_ID
201501428746 is
20180146519738
20146023979614
$201801403602 \quad 18$
$201701372912 \quad 17$ 2014co393564 14 20160131255516 $201701187785 \quad 17$ 20180133972918 $201801445345 \quad 18$

201602escsas 16 $201801477170 \quad 18$ $201601472653 \quad 16$ $201701387048 \quad 17$

N. Marion Street (Dillinger Road to E. Fisher Street)
 Segment Priority \#1

June 2020

INTRODUCTION

The segment of N . Marion Street located within Jackson County was identified as the highest ranked segment as part of a Greater Egypt Regional Planning and Development Commission (Greater Eqypt) safety analysis using the most current crash dataset (2014-2018). The study area extends north from Dillinger Road and south to the E. Fisher Street intersection. The total study area length is 1.65 miles.

A factor contributing to the priority ranking in addition to the crash frequency and severity within the study limits is future traffic volume increases associated with the new Walker's Bluff Resort casino. N. Marion Street will be a direct connection between the City of Carbondale and the casino site in western Williamson County/ Carterville. The future safety performance of N. Marion Street is expected to decrease when Phase 1 of the casino opens which is tentatively planned for 2022/2023.

EXISTING CONDITIONS

The adjacent land use is a combination of agricultural (north), industrial, and residential (south) within the study area. The section of N. Marion Street extends from Dillinger Road (north) to Fisher Street (south) end of the study area. Land use is predominately industrial and residential in this section.

Marion Street is a roadway having an average width of 20 feet. Aggregate shoulders vary between 0 and 2 feet in width. The roadway is a two-lane facility with a centerline stripe in most locations. Photos 1-5 show the existing horizontal and vertical curves within the study area. The approximate location of each photo is numbered on Figure 1.

1. The horizontal curve at the north end of the study area (mile 0.70) has advance curve signs (30 MPH advisory speed plaque) and chevrons on the outside of the curve - see Photo 1. A vertical curve exists within the horizontal curve limits and is ballast of a former railroad crossing of the Illinois Central railroad.
2. Photo 2 shows the curve at the north end of the study area looking north (mile 0.75). The vertical alignment adds a level of complexity to the curve which is a contributing factor to a 2017 fatality.
3. A Winding Road (W1-5) sign is shown in Photo 3 (mile 1.1). The Winding Road (W1-5) sign typically is used instead of multiple Turn (W1-1) or Curve (W1-2) signs where there are three or more changes in roadway alignment each separated by a tangent distance of less than 600 feet.
4. Photo 4 shows the curve at the south end of the study area (mile 1.4). The advance sign for this curve in the southbound direction is shown on Photo $3-1,700$ feet north of this location.
5. Photo $\mathbf{5}$ shows that a vertical curve exists near the horizontal curve on the south end of the study area similar to the north end-ballast of a former railroad crossing associated with the Carbondale rail yard.

PHOTO 1: SB VERTICAL/HORIZONTAL CURVE (MILE 0.65)

PHOTO 2: NB VERTICAL/HORIZONTAL CURVE (MILE 0.75)

PHOTO 3: SB HORIZONTAL CURVE (MILE 1.1)

PHOTO 4: SB HORIZONTAL CURVE (MILE 1.4)

The legal speed limit on N. Marion Street is 55 miles per hour. A posted speed of 30 miles per hour exists for N. Marion Street south of E. Fisher Street within the City of Carbondale.

SAFETY ANALYSIS

A total of 14 crashes occurred within the study area over a 5-year period (2014-2018). The severity of crashes by year is summarized on Figure 2. Injury/fatality crashes account for 50 percent of all crashes over the 5 -year period. One fatality occurred at mile 0.60 of the study area.

A fatality occurred Sunday, July 23, 2017 when the young driver of an SUV lost control north of the curve at Mile 0.70. The crash report was coded as the vehicle navigating a curve before rolling over. The driver was drug impaired. The curve shown in Photo 1 and 2 has an advisory speed of 30 MPH and is a contributing factor to the crash.

One of the 2 Type A injury crashes occurred near Glade Lane. The single vehicle crash occurred when a northbound vehicle drove off the right side of the road and struck a

FIGURE 2: CRASH FREQUENCY BY SEVERITY/ YEAR
 tree. A Type B crash also occurred just north of the curve (Mile 0.53).

Figure 3 shows histogram of the location and crash type plotted on an aerial map of the study area. The majority of crashes are single vehicle crashes where the vehicle leaves the roadway.
FIGURE 5: CRASH SEVERITY AND LOCATION MAP

COUNTERMEASURES

Countermeasures are identified that improve safety performance by focusing on the crash types having the greatest potential for mitigation. The proposed countermeasures are directly linked to historical crash patterns. While the low and moderate cost countermeasure are systemic in nature, the countermeasures are targeted to segments having a higher probability of crashes: segments of horizontal and vertical curves. Three primary countermeasures are proposed as summarized below:

1. Construct paved shoulders (3 ft width) on horizontal curves to accommodate longitudinal rumble strips
2. Reprofile short sections to remove bumps of old rail ballast located within or directly in advance of horizontal curves.
3. Upgrade pavement markings along curves (edge line markings) and curve warning signs/chevrons that are consistent with the Manual of Uniform Traffic Control Devices (MUTCD). Compliance with the MUTCD will reduce driver workload thus improve safety performance.

The total length of improvements is 1.25 miles of the 1.65 -mile corridor.

NORTH CURVE COUNTERMEASURE (MILE 0.45-0.75) SEGMENT 1

The horizontal and vertical curve shown in Photos $\mathbf{1}$ and $\mathbf{2}$ has a 250 ft radius. Three crashes occurred in proximity to this curve including one fatality. Two other fixed object crashes occurred north of the horizontal curve.

A medium-term countermeasure would include the following improvements:

- Reconstruct the vertical curve (250 ft length) by revising the profile on N . Marion Street. The vertical curve adds a level of complexity to the driving task that could be removed thus improve safety performance.
- Add 3 ft paved shoulders, longitudinal rumble stripes, and edge lines to a 0.30 -mile segment The existing roadway requires cyclists to use the travel lane since no shoulder exists. An 8 inch rumble stripe on the edge line is proposed with 10 ft gaps to better accommodate bicyclists. Despite these bicycle accommodations, the proposed design assumes cyclists would use the travel lane as done in the existing condition.
- The existing curve has advance warning signs and a 30 MPH advisory speed plaque. A ball bank study to confirm the advisory speed at this location is recommended.

MIDDLE CURVE COUNTERMEASURE (MILE 1.10-1.20) SEGMENT 3

The horizontal and vertical curve shown in Photo 3 has an 820 ft radius. One road departure crash occurred in proximity to this curve. A medium-term countermeasure would include the following improvements:

- Convert the Winding Road sign to a standard Curve Warning sign (W1-2) for the curve shown in Photo 3. The tangent length south of the middle curve is about 600 feet which is the minimum distance between successive curves. Installing more targeted curve warning with an appropriate advisory speed is recommended to provide more curve specific information to the driver.
- The existing curve has advance warning signs and a 30 MPH advisory speed plaque. A ball bank study to confirm the advisory speed at this location is recommended since the current advisory speed on the Winding Curve sign is applicable to the curves near Mile 1.4. The addition of paved shoulders, longitudinal rumble stripes, and edge lines as recommended at other locations are not supported by the crash history at this location. Therefore, a recoverable fore slope is proposed to mitigate Road Departure crashes within this segment.
- Regrading on both sides of N . Marion Street is proposed to mitigate a fixed object crash near Mile 1.14.

No CMF is applied for the regrading of shoulder countermeasure (1.10-1.20), but the costs are included in the overall project resulting in a conservative benefit/ cost ratio.

SOUTH CURVE COUNTERMEASURE (MILE 1.25 -1.45) SEGMENT 2

Photo 3 shows the Winding Road sign with an advisory plaque of 30 MPH . The use of the W1-5 sign meets the MUTCD guidance when a roadway changes direction more than 3 times. The following countermeasures for the reverse curves at the south end of the study area are recommended:

- Install curve warning, speed advisory plaques, and/or chevrons in accordance with Table 2C-5 of the MUTCD along N. Marion Street especially for the south end of the study area.
- Add a reverse curve sign for the 2 curves at the south end of the study area. The smallest radius curve is 215 feet. The vertical curve at the south end is also a contributing factor to a sideswipe meeting crash.
- The addition of chevrons is proposed for the south curves due to the size of the radii (320 feet).

Table 2C-5. Horizontal Alignment Sign Selection

Type of Horizontal Alignment Sign	Difference Between Speed Limit and Advisory Speed				
	5 mph	10 mph	15 mph	20 mph	25 mph or more
Tum (W1-1), Cune (Wi2), Reverse Turn (W13). Reverse Cunve (W1-4). Winding Roand (W1-6), and Combination Horizontal Alignmentilittorsection (Wi0-1) (see Section 2C. 07 to detarmine which sign to use)	Recommended	Required	Required	Required	Required
Advisory Speed Plaque (W13-1P)	Recommended	Required	Required	Required	Requirsd
Chevions (W1-8) and/or One Direction Large Arrow (W1-6)	Optionat	Recommendod	Requirod	Roquirsed	Requirod
Exit Spood (w13-2) and Ramp Speed (W13-3) on enit ramp	Optional	Optional	Ppocmmended	Required	Required

Note: Required means that the sign andfor plaque shall be used, recommended means that the sign andior plaque should be used, and optional means that the sign and/or plaquas may be used.
See Section 2C.06 for rosdways with less than 1,000 ADT.

- Relocate advance warning signs no more than 225 feet in advance of the curves to be consistent with Table 2C-4 of the Manual of Uniform Traffic Control Devices (MUTCD). Existing signs are
located 400 feet in advance of the horizontal curves．Section 2C． 05 emphasizes that signs are not placed too far in advance of the condition．

Table 2C－4．Guidelines for Advance Placement of Warning Signs

Posted or 85th－ Percentile Speed	Advance Placement Distance ${ }^{\text {A }}$								
	Conditon A：Splos noductionandianechanginginhosvy valic：	Condition B：Depeleration to the listed advisory speed（mph）for the condition							
		0^{3}	10^{4}	20^{4}	30^{4}	40^{4}	50^{4}	60^{4}	70^{4}
20 mph	225 ft	$100 \mathrm{~m}^{8}$	NA ${ }^{1}$	－	－	－	－	－	－
25 mph	325 ft	$100 \mathrm{mt}^{6}$	NA ${ }^{\text {b }}$	NAS	－	－	－	－	－
30 mph	400 If	$100 \mathrm{~m}^{5}$	NUA	NA ${ }^{\text {a }}$	－	－	－	－	－
35 mph	585 ft	$100 \mathrm{~m}^{5}$	N／A	NAI	NA	－	－	－	－
40 mph	870 ft	1265	100 ＊0	$100 \mathrm{~m}^{\prime}$	N／5	－	－	－	－
45 mph	775 \＃	175 ft	125 委	$100 \mathrm{mr}^{\mathbf{r}}$	$100 \mathrm{n}^{6}$	N／A ${ }^{\text {c }}$	－	－	－
50 mph	885 ft	250 ft	200\％	175 ft	125 n	100 ff	－	－	－
S5 mph	990 fl	325 ft	275 \％	22517	200\％	125 n	NA ${ }^{\text {a }}$	－	－
t0mph	1，100\％	400 ft	350\％	325 ft	2758	200 H	100 nt	－	－
65 mph	1，200 \％	475 fl	450%	400 n	350 f	275 告	200 T	100\％	－
70 mph	1，250 \＃	550 n	625．t	500 ft	450 ft	375 n	275π	150\％	－
76 mph	1，350 f	650 n	625 t	600 ft	550ft	475 年	375 ！	280）	100 m

－Reconstruct the vertical curve（ 200 ft length）by revising the profile on N．Marion Street．The vertical curve obscures the horizontal curve immediately north of the old railroad bed．Flattening the vertical curve would mitigate the sideswipe－meeting crash and fixed object crash to improve safety performance．
－Add 3 ft paved shoulders，longitudinal rumble strips，and edge lines to a 0.20 －mile segment See narrative as part of the North Curve section of the report for additional discussion regarding the longitudinal rumble strip design．

Figure 6 shows the proposed typical section on N．Marion Street．

FIGURE 6：N．MARION STREET TYPICAL SECTION

BENEFIT COST ANALYSIS

Countermeasures are proposed on N．Marion Street to improve the safety performance of the corridor． The project data used to perform the benefit cost analysis is based on the following assumptions．

1．The crash dataset was scrubbed to include only Road Departure crashes（Fixed Object，Overturning，Sideswipe Meeting）for the benefit cost analysis．
2. Applying both CMFs for Install Chevron Signs and for Install Advance Curve Warning Signs was not done to over reporting safety benefits. The addition of curve warning and chevron signs is most beneficial between mile 1.1 and 1.5 whereas safety increases of the existing curve warning signs and chevrons at the north curve (mile 0.70) would be less. Therefore, only one sign related CMF was applied to all Road Departure crashes within the 1.25 mile segment. The CMF to Install Chevron Signs was used instead of Install Advance Curve Warning Signs.
3. The CMF for profile improvements is considered to be low for the expected benefits. The removal of the vertical curves will significantly improve visibility of the horizontal curve and vehicle control when navigating the horizontal curve. The vertical curve at the north curve (mile 0.70) was a contributing factor of the overturning crash resulting in a fatality. These benefits are not believed to be acccounted for with the CMF thus resulting in a conservative benefit/cost ratio.
4. Minor pavement widening is proposed to improve safety performance of the existing roadway having an effective width of 20 feet $+/$ -
5. Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the travel lane as done for the existing condition. Dix Irvington Road is a not a designed bicycle route. No bicycle crashes were documented as part of the crash analysis.
The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies not limit themselves to use longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as N . Marion Street. Note that no bicycle crashes were reported during the 5-year study period and N . Marion Street is not a designated bicycle route.

Non-perfomring this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

Two alternatives were considered for the benefit cost analysis:

1. ALTERNATIVE 1: Curve/Profile Adjustments Only (0.60 -mile length). The improvements listed above were only applied to the North, Middle and South curves as described in the Countermeasures section. The total cost for the 0.60 mile segment is estimated to be $\$ 434,000$ with a Benefit Cost ratio of 18.90 calculated from the IDOT HSIP BOC analysis tool.
2. ALTERNATIVE $1+2$: Systemic Safety Improvements ($1.25-$ mile length). The improvements listed above were applied to the study segment between mile 0.40 and mile 1.65 . Shoulder widening was applied to the Curve/Profile segments and to segments between the curves. The total cost for the 1.25 mile segment is estimated to be $\$ 716,000$ with a Benefit Cost ratio of 11.50 calculated from the IDOT HSIP BOC analysis tool. A detailed cost estimate and BOC calculations are included as an attachment to this report.

While the systemic improvement (ALT $1+2$) provides a more comprehensive safety solution, the targeted countermeasures outlined in ALT 1 would improve the safety performance of the corridor as well.

Greater Egypt Safety Study

APPENDIX 01: JEF DIX IRVINGTON ROAD

Mr. Brandon Simmons Jefferson County Engineer 750 Old Fairfield Road
Mt. Vernon, Illinois 62864
Mr. Brandon Simmons,
The Illinois Department of Transportation is pleased to inform you that your project has been selected for local Highway Safety Improvement Program (HSIP) funding. The project, identified by the Department as HSIP \#202012017, involves paved shoulders, longitudinal rumble strips, shoulder regrading and curve warning signs along Dix Irvington Road from US 51 to 0.5 Miles east of Copple Lane. Please note it is the Department's preference for the project to be continuous along Dix Irvington Road. Thus, additional funding is provided to complete safety improvements between the two segments outlined in the application. Congratulations on your successful application.

The federal HSIP commitment for this project will not exceed $\$ 1,616,009$. The deadline for this award to be federally authorized is October 6, 2023 or funds will be rescinded.

Please contact Mr. J. Travis Emery, District 9 Local Roads Engineer at (618) 351-5260, or at James.Emery@illinois.gov to discuss program requirements and preparation of any agreements and / or contracts. Projects located within a Metropolitan Planning Organization (MPO) planning boundary are required to be listed in the local MPO's Transportation Improvement Program (TIP). Questions regarding the HSIP may be directed to Ms. Melinda Kos in the Central Bureau of Local Roads and Streets by telephone at (217) 785-5178.

All HSIP grant recipients must be registered with the State of Illinois to comply with the Grant Accountability and Transparency Act (GATA) 30 ILCS 708. Full GATA compliance is required, including the completion of all pre-award GATA paperwork. You may send inquiries to the Central Bureau of Local Roads and Streets or to DOT.GATA@illinois.gov for further assistance.

An important element of the HSIP is feedback on the safety performance of improved locations. Review and reporting of the crash history at this project location before and after the completion of construction will involve your agency. IDOT will coordinate this review approximately four years after construction is completed.

Sincerely,

Stephane B. Seck-Birhame, P.E., PTOE
Acting Bureau Chief of Local Roads and Streets

cc: Alan Ho, FHWA - Illinois Division
Cynthia Watters, IDOT - Bureau of Safety Programs and Engineering
J. Travis Emery, IDOT District 9

File


```
Please provide a detailed cost stimation for all countermeasures along with this summary sheet.
The combined effect of multiple countermeasures is linited to 0.60 or the smallest CMF
```

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIAL CASE		-
落		$\frac{0}{\frac{0}{c}}$			$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\rightharpoonup}{\ddot{D}} \\ & \stackrel{\rightharpoonup}{I} \end{aligned}$	$$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			$\begin{aligned} & \frac{\stackrel{\rightharpoonup}{\bar{v}}}{\overline{0}} \\ & \frac{0}{\overline{0}} \\ & \frac{0}{0} \\ & \hline \end{aligned}$			$\begin{aligned} & E \\ & \stackrel{5}{5} \\ & \frac{5}{\bar{x}} \end{aligned}$				坒			
Crash Severity	ALL	AG	AN	FO	но	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes																			0	0	0
A-Injury Crashes				1					4										2	0	5
B-Injury Crashes				2															0	0	2
C-Injury Crashes				1															1	0	1
PDO Crashes				4					2										4	0	6

* CMF = Crash Modification Factor
** EUAC = Estimated Uniform Annual Cost

COST ESTIMATE - DIX IRVINGTON ROAD

The combined effect of multiple countermeasures is limited to 0.60 or the smalest CMF

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIALCASE		
边					$\begin{aligned} & \text { б } \\ & \text { ס} \\ & \text { 区ָ } \end{aligned}$	$\begin{aligned} & \stackrel{5}{E} \\ & \stackrel{\text { En }}{ \pm} \\ & \hline \end{aligned}$							$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{w} \\ & \stackrel{\rightharpoonup}{w} \end{aligned}$	$\begin{aligned} & \stackrel{5}{5} \\ & \stackrel{5}{5} \\ & \text { 菏 } \end{aligned}$			$\begin{gathered} \text { g } \\ \stackrel{y}{5} \\ \hline \end{gathered}$	－			
Crash Severity	ALL	AG	AN	FO	но	LT	OthervC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes																			0	0	0
A－lnjury Crashes				1					1										1	0	2
B－Injury Crashes				1															0	0	1
C－Injury Crashes																			0	0	0
PDO Crashes				1					1										2	0	2

BENEFIT CALCULATIONS				COUNTERMEASURE COST CALCULATIONS						
COUNTERMEASURE		CMF＊	Crash Type affected by this improvement	Unit Cost	Quantity	Units	Total Cost	Service Life	Present worth	EUAC＊＊
4．1．3．S1．1－Pavement Treatments－Add or Widen Paved Shoulder		0.82	ROR，FO，HO，OVT，SOD，SSD	\＄95，807	1.4	Miles	\＄134，130	15	\＄134，130	\＄9，900
4．1．9．S1．1－Pavement Treatments－Install Rumble Strips（Shoulder）		0.67	Fo，ovt	\＄14，702	1.4	Miles	\＄20，582	8	\＄35，621	\＄2，650
4．7．3．51．1－Roadside Safety－Flatten Sideslopes		0.94	All	\＄23，353	1.4	Miles	\＄32，694	20	\＄32，694	\＄2，450
			All							
				TOTAL COST						
										\＄15，000
BENEFIT／COST	5.50		ANNUAL NUMBER OF FATALITIES POTEN	EVENTED	0.00		TOTAL	TALITIES PR	EVENTED	0.00

[^1]COST ESTIMATE - DIX IRVINGTON ROAD - SUPPLEMENTAL

Project: Dix Irvington Road
Description: Pre-Design Estimate

Project \#:
Municipality:
Road Dist: Nine
County: Jefferson
Section:

Dix Irvington Road
 Jefferson County

June 2020

INTRODUCTION

A 6.5 mile segment of Dix Irvington Road was identified as the highest ranked segment within Jefferson County as part of a Greater Egypt Regional Planning and Development Commission (Greater Eqypt) safety analysis using the most current crash dataset (2014-2018). Several intersections were also ranked within the top 15 locations within the county: the Krupp Lane intersection (rank \#10, mile 4.3) and the Palmer Road intersection (rank \#15, mile 6.4)
Safety analysis using 5 years of crash data (2011-2015) was completed by IDOT in 2017 and identified a 2.4-mile segment of Dix Irvington Road as one of 3 Critical Safety Tier segments (17-9-1-007). The 2017 segment was located between the US Route 51 (0.00) interchange and the Richview Road intersection (mile 2.75). No intersections were ranked above the Medium Safety Tier ranking in the county.

The priority rankings using 2014-2018 crash data, the correlation to the 2017 Safety Tier lists and a FY2022 STR funded resurfacing project in were factors to an application for safety funding on Dix Irvington Road as shown in Figure 1.

EXISTING CONDITIONS

Dix Irvington Road (PCR) is a county route (CR 39) providing east/west connectivity between US Route 51 and I-57. The roadway width is 21 feet with a painted centerline and edge lines for the 10.5 -mile length. An aggregate shoulder averages 1-3 feet. The legal speed is 55 MPH. Intermittent No Passing zones exist within the study area due to intersections, horizontal curves, or crest vertical curves.

A factor that contributes to the safety performance of the corridor is 4-6 inch drop offs along the edge of pavement. County maintenance forces are not able to avoid drop offs with aggregate shoulders due a combination of high-speeds and narrow lanes resulting in rutting of non-paved surfaces. Temporary HMA patches are used to fill pavement drop off areas between the edge of pavement and the displaced aggregate shoulder as shown in Photos 1-5. Rutting occurs along the inside of horizontal curves and on straight segments due in part to lane widths of 10.5 feet.

Land use is a mix between residential, institutional, and undeveloped parcels. Location of photos and other items of interest shown on Figure 1. The 2016 ADT is 1,950 vehicles of which 60 are trucks west of the Richview Road intersection. The 2016 ADT is 1,000 vehicles east of the Richview Road intersection

PHOTO 1: SHOULDER REPAIR AT BALDRIDGE RD (MILE 1.0)

PHOTO 2: TEMPORARY WB SHOULDER REPAIR AT BALDRIDGE RD (MILE 1.02)

PHOTO 3: DROP OFF AND REPAIR WEST OF RAILROAD CROSSING (MILE 1.95)

PHOTO 4: DROP OFF AND REPAIR EAST OF RAILROAD CROSSING (MILE 2.55)

PHOTO 5: VEHICLE POSITION AT EDGE OF PAVEMENT WHEN PASSING (MILE 6.45)

SAFETY ANALYSIS

The Emphasis Area analysis in 2017 identified Road Departure crashes as the most frequent crash type (55.8\%) resulting in Type A injuries within Jefferson County. A total of 26 crashes occurred within the study area over a 5 -year period (2014-2018). The frequency of crashes by year is summarized on Figure 2. No fatal crashes occurred over the 5-year period.

Injury crashes represent 50 percent of the total crashes. All injury crashes comprise 6 Type A injuries, 6 Type B injuries, and 6 Type C injuries. The percentage of injury crashes are even higher if the data is limited to 4 years: 17 of the 26 crashes between 2015 and 2018 were injury crashes (65.4 percent).

Road departure crashes (fixed object, overturning, sideswipe-meeting) comprise 73% of all crashes within the study area. The Road Departure crashes resulted in 6 Type A injuries, 4 Type B injuries and 1 Type C injury. Note that angle crashes that occurred at the US Route 51 and I-57 interchanges were excluded from the database.

Figure 4 shows the location of crashes at 0.5 -mile

FIGURE 2: CRASH SEVERITY BY YEAR

FIGURE 3: CRASH FREQUENCY BY TYPE
 intervals by crash type. The overturning crashes primarily occurred within segments having horizontal curves (mile 0.4-0.7;mile 6.0-6.5). The horizontal curves have a $2,000 \mathrm{ft}$ and a 1,5200 radius, respectively. However, Road Departure crashes are distributed across the study area. No crashes occurred within the segment 3.0 to 4.0 and between 6.5 to 7.0 these segments except for animal related crashes.

The crash dataset was expanded to include 15 years of data between 2005 and 2019 to assess long term crash trends. The output from the 15 -year dataset (Figure 5) was compared to the near-term dataset (Figure 4) to see if there was any correlation. The segments having lower crash frequencies over the 5year time period is similar to the crash frequency over a 15 -year time period.

Figure 5 indicates that the crashes are not focused at a specific location but rather are distributed across the entire length of the corridor. This information may help determine where more targeted countermeasures can be implemented even if the countermeasures are systemic by design.

FIGURE 4: LOCATION FREQUENCY BY CRASH TYPE

FIGURE 5: LOCATION FREQUENCY BY SEVERITY

COUNTERMEASURES

Countermeasures are identified that improve safety performance by focusing on the crash types having the greatest potential for mitigation. The proposed countermeasures are directly linked to historical crash patterns. While the low and moderate cost countermeasure are systemic in nature, the countermeasures are targeted to segments having a higher frequency of crashes. Two primary countermeasures are proposed as summarized below.

CURVE WARNING SIGN COUNTERMEASURE

All overturning crashes occurred within the proximity of two locations having reverse horizontal curves.

1. Mile 0.4 to 0.7 . The flat horizontal curves having a radius of 2,000 feet accommodates a 125 ft shift of the Dix Irvington Road alignment. No curve warning signs exist at this location despite the existing alignment being less than 55 MPH .
2. Mile 6.0 to 6.5 . The horizontal curves having a minimum radius of 1,200 feet accommodates a 850 ft shift of the Dix Irvington Road alignment. Reverse Curve warning signs exist on the approaches to the horizontal curves. No advisory speed plaque exists. A limited number of chevrons exist.

A short-term countermeasure installs or upgrades curve warning signs and chevrons at horizontal curves to provide a warning to drivers about the edge of pavement. The installation of curve warning signs is a proven safety countermeasure. The following countermeasures for the reverse curves at the west end of the study area are recommended:

- Install reverse curve warning, speed advisory plaques, and/or chevrons in accordance with Table $\mathbf{2 C} \mathbf{- 5}$ of the MUTCD for the 2 curves at the west end of the study area near Mile 0.4 to 0.7 . Chevrons are recommended even if the advisory speed is 10 MPH less than the speed limit. A ball bank study to confirm the advisory speed at this location is recommended.

Table 2C-5. Horizontal Alignment Sign Selection

Type of Horizontal Alignment Sign	Difference Between Speed Limit and Advisory Speed				
	5 mph	10 mph	15 mph	20 mph	25 mph or more
Turn (W1-1), Curve (W12), Reverse Turn (W1-3), Reverse Curve (W1-4), Winding Road (W1-5), and Combination Horizontal Alignment/Intersection (W10-1) (see Section 2C. 07 to determine which sign to use)	Recommended	Required	Required	Required	Required
Advisory Speed Plaque (W13-1P)	Recommended	Required	Required	Required	Required
Chevrons (W1-8) and/or One Direction Large Arrow (W1-6)	Optional	Recommended	Required	Required	Required
Exit Speed (W13-2) and Ramp Speed (W13-3) on exit ramp	Optional	Optional	Recommended	Required	Required

[^2]－Upgrade reverse curve warning，speed advisory plaques，and／or chevrons in accordance with Table 2C－5 of the MUTCD for the 2 curves at the east end of the study area near Mile 6.0 to 6．5． A ball bank study to confirm the advisory speed at this location is recommended．
－Relocate advance warning signs no more than 225 feet in advance of the curves to be consistent with Table 2C－4 of the Manual of Uniform Traffic Control Devices（MUTCD）．Existing signs are located 700 feet in advance of the horizontal curves．Section 2C． 05 emphasizes that signs are not placed too far in advance of the condition．

Table 2C－4．Guidelines for Advance Placement of Warning Signs

Posted or 85th． Percentile Speed	Advance Placement Distance ${ }^{1}$								
	Condtion A：Spood reductionandianecharginginhewy tratic	Condition B：Deceleration to the listed advisory speed（mph）for the condition							
		0^{3}	10^{8}	20^{4}	30^{4}	40^{4}	50^{4}	60^{4}	70^{4}
20 mph	225 t	100π	N／A ${ }^{5}$	－	－	－	－	－	－
25 mph	325 离	100 mr	N／As	N／A	－	－	－	－	－
30 mph	460\％	100 tr	N／A ${ }^{5}$	NAS	－	－	－	－	－
35 mph	565 t	100 \＃＊	N／As	N／${ }^{\text {b }}$	NAM	－	－	－	－
40 mph	670%	125 tr	$100 \mathrm{~m}^{8}$	100 m	N／a	－	－	－	－
45 mph	775 需	175 \＃1	125 ft	100 tr	$100 \mathrm{~m}^{6}$	N／A ${ }^{\text {s }}$	－	－	－
50 mph	895 \％t	250 ft	200 ft	176 tt	125 各	$100 \mathrm{mt}^{5}$	－	－	－
55 mph	980 \％	325 nt	275 ft	225 \＃1	200\％	125 ft	N／4 ${ }^{\text {c }}$	－	－
60 mph	1．100 ft	400 fl	350 ft	325 fi	275 \％	200 ft	100 tr	－	－
65 mph	1.200 ft	475 \＃1	450 ft	400 ft	350\％	275 ft	200 ft	$100 \pi^{5}$	－
70 mph	1.250 ft	550 ft	625 it	500 ft	450 \％	375 ft	276 fl	150 it	－
75 mph	1，350 ft	650 ft	625 ft	600 Hf	550 \％	475 ft	375 ft	250 \％	100 mt

PAVED SHOULDER COUNTERMEASURE

The frequency of crashes occurring beyond the limits of the horizontal curves suggests other factors contribute to the safety performance on Dix Irvington Road（i．e．，edge of pavement drop offs）．A medium－ term countermeasure reconstructs the aggregate shoulder as a paved shoulder from 0.25 to 2.85 （see Figure 1）to address pavement drop offs in conjunction with longitudinal rumble strips．

Drop offs at the edge of pavement occur where the aggregate shoulder has been dispersed or rutted due to higher speed vehicles driving on a non－improved surface．The drop off at the edge of pavement has been an on－going maintenance issue due，in part，to the high speeds and lack of paved shoulders．

The following targeted countermeasures are proposed on the Dix Irvington Road corridor：
－Replace the aggregate shoulder with a 2 ft paved shoulder（full depth）．A paved shoulder width of 2 feet does not require a design exception per BLR Figure 33－3B but does deviate from the IDOT guidance for paved shoulders（ADT＜2，000 vehicles）
－Add a 4 ft graded shoulder where feasible within exiting right of way limits to stabilize the existing pavement and to reduce the frequency of overturn vehicles attributed to fore slopes
－Add longitudinal rumble strips to increase driver attention．

Implementing the proposed countermeasures as part of separately funded pavement rehabilitation project on rural, high speed roadways is recommended as a best practice to leverage safety funds. The proposed countermeasures are to be constructed in conjunction with a funded resurfacing project using STR funds from US Route 51 to Richview Road (mile 2.75). Combining shoulder improvement projects as part of a larger pavement rehabilitation project can achieve an economy of scale.

Context Sensitive Design (CSD) principles are applicable to the Dix Irvington Road corridor due to the impacts associated with design guidance provided by the BLR for reconstruction projects. The development of a context sensitive countermeasure that is systemic
 is based guidance from the National Cooperative Highway Research Program (NCHRP) Report 480: A Guide to Best Practices for Achieving Context Sensitive Solutions (2002) and the AASHTO Highway Safety Design and Operations Guide (1997).

Of the broad categories of transportation issues that are most applicable to the Dix Irvington Road study area, improving safety performance is the purpose of the project. Two aspects are to be addressed when evaluating safety countermeasures: nominal and substantive safety. Both nominal and substantive safety are important to include in the decision-making process.

1) Nominal Safety - A countermeasure's adherence to design criteria and/or standards as published in the AASHTO policy, the Manual of Uniform Control Devices (MUTCD) and/or the BLR. The existing typical section complies with IDOT design criteria for shoulder widths (BLR Figure 33-3B). The preferred design criteria for reconstruction projects (BLR Figure 32-2B) are not met.
2) Substantive Safety - The actual performance of the Dix Irvington Road corridor is to be compared to similar facilities to assess relative performance. Crash statistics for a corridor having a similar typical section as Dix Irvington Road does not appear on the priority ranking for the Greater Egypt Regional Planning and Development Commission (Greater Eqypt) safety analysis or the 2017 Safety Tier for segments.

In the case of Dix Irvington Road, the substantive safety performance of Dix Irvington Road is not attributed to the design criteria outlined in BLR Figure 32-2B. Rather, the substantive safety performance of Dix Irvington Road is worse than comparable roadways due to the presence of pavement drop offs. Figure 6 shows a decision matrix of nominal and substantive safety countermeasures.

The proposed typical section is consistent with the guidance in the IDOT Bureau of Local Roads \& Streets manual (BLR) in order to maximize the length of safety related improvements within the existing ROW width (70 feet).Complete reconstruction is not recommended since the existing typical section is consistent with Figure 33-3B of the BLR for roadways having an ADT < 2,000 vehicles: Figure 7 shows the proposed typical section for Dix Irvington Road.

FIGURE 6: APPLYING SAFETY TO PROBLEM DEFINITION AND SOLUTIONS

	Nominal Safety Criteria		
		Meets	Does Not Meet
	$\begin{aligned} & \frac{\infty}{\otimes} \\ & \sum \\ & \sum \end{aligned}$	- Infrastructure improvements only (no need or justification for geometric revisions) based on safety	- 3R criteria may be considered - Incorporate only low cost safety enhancements - "Upgrade" to full standards may not be cost effective (consider design exceptions to avoid costs and impacts)
		- Targeted safety improvements (low or high cost depending on extent of problem) - Focus on cost-effective solutions to safety problems	- Complete reconstruction to current criteria probably warranted (no or very minimal design exceptions) - Consider special targeted safety enhancements

FIGURE 7: DIXIRVINGTON ROAD TYPICAL SECTION

BENEFIT COST ANALYSIS

The PRIMARY countermeasures while systemic are limited to a total segment length of 3.10 miles on Dix Irvington Road. The project data used to perform the benefit cost analysis is based on the following assumptions.

- The crash dataset was scrubbed to only include Road Departure crashes (Fixed Object, Overturning, Sideswipe Meeting). The adjusted dataset includes 9 crashes.
- The CMF for Install Advance Curve Warning Signs is proposed since the need for chevrons is not known at this time (which is a separate CMF). The addition of curve warning signs is applicable between mile 0.4 and 0.7. The CMF for Install Advance Curve Warning Signs (0.87) was applied to the adjusted dataset (9 crashes) -- the warning sign upgrades proposed between mile 6.0 and 6.5 are accounted by the 5 crashes between Mile 1.5 and 3.0 (see Figure 4).
- Upgrading to a 2 ft paved shoulder along the 0.25 to 2.85 mile segment is proposed to improve safety performance of the existing roadway having an effective width of 21 feet $+/-$. The cost estimate include regrading of shoulders within existing right of way to be more compliant with BLR Figure 32-2B. The improvements are to be constructed in conjunction with a STR funded resurfacing project within similar project limits.
- Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the travel lane as done for the existing condition. Dix Irvington Road is a not a designated bicycle route. No bicycle crashes were documented as part of the crash analysis.

The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies not limit themselves to use longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as Dix Irvington Road. Note that no bicycle crashes were reported during the 5 -year study period and Dix Irvington Road is not a designated bicycle route.

Non-performing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

The total cost for the overall 3.1 mile segment (2.6 -mile shoulder widening and 0.5 -mile curve warning signs) is estimated to be $\$ 673,000$ with a Benefit Cost ratio of 3.70 , calculated from the IDOT HSIP BOC analysis tool. A detailed cost estimate and BOC calculations are included as an attachment to this report.

SUPPLEMENTAL BENEFIT COST ANALYSIS

Shoulder improvements would benefit other segments within the study limits. Therefore, the addition of a 2 ft paved shoulder along a 0.7 -mile segment would further improve safety performance. The PRIMARY countermeasures are limited to the curve warning signs between mile 5.9 and mile 6.6. The following SUPPLEMENTAL improvements are proposed if additional funds are available to further mitigate the 5 fixed object and overturn crashes near the existing reverse curves. These improvements are proposed in addition to the PRIMARY countermeasures listed in the Benefit Cost Analysis section of the safety study.

- Upgrading to a 2 ft paved shoulder along the 5.90 to 6.60 mile segment is proposed to improve safety performance of the existing roadway having an effective width of 21 feet $+/-$. The cost estimate include regrading of shoulders within existing right of way to be more compliant with BLR Figure 32-2B. The improvements are to be constructed in conjunction with a STR funded resurfacing project within similar project limits.
- Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the travel lane as done for the existing condition. Dix Irvington Road is a not a designated bicycle route. No bicycle crashes were documented as part of the crash analysis.

The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies not limit themselves to use longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as Dix Irvington Road. Note that no bicycle crashes were reported during the 5 -year study period and Dix Irvington Road is not a designated bicycle route.

Non-performing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

This additional 0.7 -mile segment for shoulder widening reduces the length of the gap between shoulder and warning sign improvements between the reverse curves on either end of the study area. The paved shoulders are considered to be more permanent solutions whose need is shown in Photo 5.

The total cost for the overall 0.7 mile segment is estimated to be $\$ 188,000$ with a Benefit Cost ratio of 5.50 , calculated from the IDOT HSIP BOC analysis tool. A separate cost estimate and benefit cost analysis are included as part of this funding application and is labeled as a SUPPLEMENTAL countermeasure.

A future funding application may be submitted by Jefferson County to mitigate the safety performance issues east of Richview Road. Dix Irvington Road is a route eligible for Truck Access Route Program (TARP) funds which may be leveraged in conjunction with future safety funds.

Greater Egypt Safety Study

APPENDIX 02: GREENS MARKET ROAD

$$
\begin{aligned}
& \text { Please provide a detailed cost estimation for all countermeasures along with thes thes sumes } \\
& \text { The combined effect of multiple countermeasures is linited to } 0.60 \text { or the smallest CMF }
\end{aligned}
$$

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIAL CASE		$\stackrel{\text { ¢ }}{\text { ¢ }}$
飳		$\frac{\frac{0}{\square}}{\frac{\sigma}{c}}$						$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$									$\begin{aligned} & \text { g. } \\ & \substack{E \\ \vdots} \end{aligned}$	둒	$\begin{aligned} & \stackrel{0}{E} \\ & \stackrel{E}{E} \\ & \frac{\square}{\bar{Z}} \end{aligned}$		
Crash Severity	ALL	${ }_{\text {AG }}$	AN	FO	HO	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes		1																	0	0	1
A-Injury Crashes				1															0	0	1
B-Injury Crashes																1			0	0	1
C-Injury Crashes		1																	0	0	1
PDO Crashes				3					1			1					1		0	0	

CMF = Crash Modification Factor
** EUAC = Estimated Uniform Annual Cost

COST ESTIMATE - GREENS MARKET ROAD - SUPPLEMENTAL

Project: Greens Market Road (Kathleen Rd to US Route 51/IL 14)
Description: Pre-Design Estimate

Estimate By:	BMB (CMT)	$4 / 23 / 2021$
Checked By:	SPH (CMT)	$4 / 23 / 2021$

Project \#:
Municipality:
Road Dist: Nine
County: Perry
Section:

Greens Market Road

 Perry CountyApril 2021

OVERVIEW SUPPLEMENTAL

A 3.07-mile segment of Greens Market Road (CH 27) from Sutter Road (mile 2.24) to US Route 51 (mile 5.82) was identified as the highest ranked segment within Perry County as part of a Greater Egypt Regional Planning and Development Commission safety analysis using the most current crash dataset (2014-2018). The Kathleen Road intersection within the study limits was also ranked \#1 on the local priority list using the same dataset.

The PRIMARY improvements are focused on the Greens Market Road/ Wells Street Road intersection (MP 4.90 to MP 5.15). The SUPPLEMENTAL improvement focuses on the Greens Market Road segments (MP 3.42 to MP 5.82) not including the limits of the PRIMARY improvements.

The priority ranking performed for Perry County was independent of previous analysis performed by the IDOT Bureau of Safety Programs and Engineering (BSPE). Various segments and intersections also have been identified by IDOT as priority safety locations:

1. IDOT 2017 safety analyses (2011-2015) identified a 1.85-mile segment of Greens Market Road as a Medium Safety Tier segment extending from Kathleen Road to east of 6 Mile Creek Road (MP 5.40).
2. The Kathleen Road/ Greens Market intersection was classified as one of 3 Low Safety Tier intersections within the Perry County jurisdiction from the IDOT 2017 safety analysis.
3. The IDOT Run Off the Road Initiative (RORI) identified a 2.80 -mile segment on Greens Market Road between Sutter Road (mile 2.24) and east of 6 Mile Creek Road (mile 5.40). The suggested countermeasure from the RORI tool is Centerline Rumble Strips and Update Edge Lines - see limits (dashed blue line) in Figure 1.

The 2020 priority rankings using 2014-2018 crash data, the correlation to the 2017 Safety Tier lists and the RORI output were factors to submit an application for safety funding on Greens Market Road.

EXISTING CONDITIONS (SUPPLEMENT)

Greens Market Road (GMR) is a county route that serves as a by-pass of DuQuoin between IL 14/ US Route 51 and IL 152. The roadway width is 20-21 feet with a painted centerline and edge line. An aggregate shoulder averages 0-2 feet. The legal speed is 55 MPH . Intermittent No Passing zones exist within the study area due to intersections, horizontal curves, or rolling terrain.

A factor that contributes to the safety performance of the corridor are drop offs along the edge of pavement. The 2019 ADT is 1,300 vehicles. Land use is a mix of residential, agricultural, and undeveloped parcels. Location of photos and other items of interest are shown on Figure 2.

PHOTO 1: EB APPROACH OF KATHLEEN ROAD (MILE 3.48)

PHOTO 2: WB GREENS MARKET RD LOOKING SOUTH AT KATHLEEN RD (MILE 3.51)

PHOTO 3: SHOULDER DROP-OFF EAST OF VANCIL CEMETARY RD (MILE 4.55)

PHOTO 4: EB GREENS MARKET RD @ CURVE (MILE 4.80)

PHOTO 5: NO SHOULDER EAST OF WELLS STREET RD (MILE 5.20)

PHOTO 6: SHOULDER DROP-OFF EAST OF WELLS STREET ROAD (MILE 5.20)

PHOTO 7: SHOULDER DROP-OFF WEST OF RR CROSSING (MILE 5.50)

PHOTO8: NO SHOULDER ON WB GREENS MARKET ROAD (MILE 5.70)

SAFETY ANALYSIS

A total of 13 crashes occurred within the study area over a 5 -year period (2015-2019). The frequency of crashes by year is summarized on Figure 3.

One fatal crash occurred over the 5year period - an angle crash at the Kathleen Rd intersection that occurred at 8:04 AM on a Saturday. An eastbound vehicle ran the stop sign and struck a through vehicle on Kathleen Road. The at-fault driver died and a passenger had severe injuries.

Injury/fatal crashes represent 46.2% of the total crashes within the study area. All injury crashes comprise 2 Type A injuries, 2 Type B injuries, and 1 Type C

FIGURE 3: CRASH SEVERITY BY YEAR

FIGURE 4: CRASH FREQUENCY BY TYPE injury.

Road departure crashes (fixed object, overturning, sidewipe-meeting) comprise 69% of all crashes within the study area as shown in Figure 4. The subset of only Road Departure crashes resulted in 2 Type A injuries and 2 Type B injuries. The primary countermeasure will address Road Departure crashes due to crash frequency and severity.

Low-cost countermeasures can be implemented to address other crash types such as angle crashes. Therefore, the angle crashes associated with the Kathleen Road intersection remained within the dataset. Low-cost countermeasure may consist of improved sign visibility and changes to traffic control at the intersection.

A horizontal curve having a radius of 1,300 feet in located near MP 4.80. BLR Figure 29-3B suggests that a 7.5% superelevation rate would be required to meet a design speed of 55 MPH for a $1,275 \mathrm{ft}$ radius. The cross slope of the existing roadway is a normal crown section as shown in Photo 4 which meets design criteria for 20 MPH .

Figure 5 shows the location of crashes at 0.5-mile intervals by crash type. The fixed object/ overturning crashes were higher on segments having horizontal curves but occur along the length of the study area. This information may help determine where more targeted countermeasures can be implemented even if the countermeasures are systemic by design.

FIGURE 5: LOCATION FREQUENCY BY CRASH TYPE

countermeasures (SUPPLEMENTAL)

Countermeasures are identified that improve safety performance by focusing on the crash types having the greatest potential for mitigation. The proposed countermeasures are directly linked to historical crash patterns. While the low and moderate cost countermeasure are systemic in nature, the countermeasures are targeted to segments having a higher frequency of crashes (i.e., between Kathleen Rd and US Route 51). Three SUPPLEMENTAL countermeasures are proposed as summarized below. These countermeasures are combined into a single application that is SUPPLEMENTAL to the PRIMARY application.

PAVED SHOULDER COUNTERMEASURE (SUPPLEMENTAL)

The frequency of crashes occurring beyond the limits of the Wells Street Road improvement suggests other factors contribute to the safety performance on Greens Market Road (i.e., edge of pavement drop offs). A medium-term countermeasure reconstructs the aggregate shoulder as a paved shoulder to address pavement drop offs in conjunction with longitudinal rumble strips at the following locations:

- Kathleen Road (MP 3.42) to MP 4.90 (west limits of PRIMARY countermeasure). The proposed countermeasures start at the Kathleen Road intersection since the safety study did not find crashes occurring between Kathleen and Sutter Road (MP 2.24).
- MP 5.15 (east limits of PRIMARY countermeasure) to the US Route 51 intersection (MP 5.82)

Drop offs at the edge of pavement occur where the aggregate shoulder has been dispersed or rutted due to higher speed vehicles driving on a non-improved surface. The drop off at the edge of pavement has been an on-going maintenance issue due, in part, to the high speeds and lack of paved shoulders.

The following targeted countermeasures are proposed on the Greens Market Road corridor:

- Replace the aggregate shoulder with a 2 ft paved shoulder (full depth) plus a 2 ft graded shoulder
- Add longitudinal rumble strips to increase driver attention.
- Advance curve warning signs near MP 4.80 (see Curve Signing section)

Context Sensitive Design (CSD) principles are applicable to the Greens Market Road corridor due to the impacts associated with design guidance provided by the BLR for reconstruction projects. The development of a context sensitive countermeasure that is systemic is based guidance from the National Cooperative Highway Research Program (NCHRP) Report 480: A Guide to Best Practices for Achieving Context Sensitive Solutions (2002) and the AASHTO Highway Safety Design and Operations Guide (1997).

Of the broad categories of transportation issues that are most applicable to the Greens Market Road study area, improving safety performance is the purpose of the project. Two aspects are to be addressed when evaluating safety countermeasures: nominal and substantive safety. Both nominal and substantive safety are important to include in the decision-making process.

1) Nominal Safety - A countermeasure's adherence to design criteria and/or standards as published in the AASHTO policy, the Manual of Uniform Control Devices (MUTCD) and/or the BLR. The existing typical section complies with IDOT design criteria for shoulder widths (BLR Figure 33-3B). The preferred design criteria for reconstruction projects (BLR Figure 32-2B) are not met.
2) Substantive Safety - The actual performance of the Greens Market Road corridor is compared to similar facilities to assess relative performance. Crash statistics for corridors having a similar typical section such as Old DuQuoin Road does not experience the number of crashes or appear on the 2017 Safety Tier for segments.

In the case of Greens Market Road, nominal safety criteria (i.e., 4 ft shoulders) are generally met as noted in Item 1. However, the substantive safety performance of Greens Market Road is worse than comparable roadways due to the presence of pavement drop offs. Figure 6 shows a decision matrix of nominal and substantive safety countermeasures.

The proposed typical section is consistent with the guidance in the IDOT Bureau of Local Roads \& Streets manual (BLR) in order to maximize the length of safety related improvements within the existing ROW width (80 feet).
FIGURE 6: APPLYING SAFETY TO PROBLEM
DEFINITION AND SOLUTIONS

	Nominal Safety Criteria		
		Meets	Does Not Meet
	$\begin{aligned} & \text { 目 } \\ & \stackrel{y}{2} \end{aligned}$	- Infrastructure improvements only (no need or justification for geometric revisions) based on safety	- 3R criteria may be considered - Incorporate only low cost safety enhancements - "Upgrade" to full standards may not be cost effective (consider design exceptions to avoid costs and impacts)
		- Targeted safety improvements (low or high cost depending on extent of problem) - Focus on cost-effective solutions to safety problems	- Complete reconstruction to current criteria probably warranted (no or very minimal design exceptions) - Consider special targeted safety enhancements

Targeted safety countermeasures are recommended since the existing typical section is consistent with Figure 33-3B of the BLR for roadways having an ADT <3,000 vehicles:

- Traveled way width of 20-21 feet
- Shoulder width of 4 feet (2 ft paved, 2 ft graded turf shoulder)
- Side slopes having front slopes of 1V:3H for embankment sections

Figure 7 shows the proposed typical section for Greens Market Road.

FIGURE 7: GREENS MARKET ROAD COUNTERMEASURE

CURVE WARNING SIGN COUNTERMEASURE (SUPPLEMENTAL)

Three (3) Fixed Object crashes occurred within the proximity of a horizontal curve near MP 4.80. No advance curve warning signs or chevrons exist. All crashes occurred at night or during poor weather conditions (fog/rain).

A short-term countermeasure would be to install or upgrade curve warning signs and chevrons at the horizontal curve to provide a warning to drivers about the change of alignment. The installation of curve warning signs is a proven safety countermeasure. The following countermeasures near MP 4.80 are recommended:

- Install curve warning, speed advisory plaques (if applicable), and/or chevrons in accordance with Table 2C-5 of the MUTCD for the curve. Chevrons are required assuming the advisory speed is 15 MPH less than the speed limit. A ball bank study to confirm the advisory speed at this location is recommended.

Table 2C-5. Horizontal Alignment Sign Selection

Type of Horizontal Alignment Sign	Difference Between Speed Limit and Advisory Speed				
	5 mph	10 mph	15 mph	20 mph	25 mph or more
Tum (W1-1), Curve (W1- 2), Reverse furn (W1-3). Reverse Curve (W1-4), Winding Road (W1-5), and Combination Horizontal Alignment/Intersection (W10-1) (see Section 2C. 07 to determine which sign to use)	Recommended	Required	Required	Required	Required
Advisory Speed Plaque (W13-1P)	Recommended	Required	Required	Required	Required
Chevions (W/1-8) andlor One Direction Large Acrow (W1-6)	Optional	Recommended	Required	Required	Required
Exit Speed (W13-2) and Ramp Speed (W13-3) on exit ramp	Optional	Optional	Recommended	Required	Required

－Locate advance warning signs no more than 225 feet in advance of the curves to be consistent with Table 2C－4 of the Manual of Uniform Traffic Control Devices（MUTCD）．

Table 2C－4．Guidelines for Advance Placement of Warning Signs

Posted or 85th－ Percentile Speed	Advance Placement Distance ${ }^{\text {P }}$								
	Condtion A－ Speod roduction and lane changing in heavy trattic＇	Condition B：Doceleration to the listod ackvisory speod（mph）for the condifion							
		0^{3}	10^{4}	20^{4}	30^{4}	40^{4}	50^{4}	60^{8}	70^{4}
20 mph	225 ft	$100 \mathrm{mt}^{6}$	N／A ${ }^{5}$	－	－	－	－	－	－
25 mph	326 年	$100 \mathrm{~m}^{5}$	N／A ${ }^{5}$	N／As	－	－	－	－	－
30 mph	460 ft	$100 \mathrm{~m}^{\text {b }}$	N／8 ${ }^{\text {＋}}$	N／A ${ }^{1}$	－	－	－	－	－
35 mph	565 \＃1	100 m	N／A5	N／As	N／AS	－	－	－	－
40 mph	670 ft	125 ft	100π	$100 \mathrm{ft}^{6}$	N／A ${ }^{1}$	－	－	－	－
45 mph	775 \＃	175 f	125 等	$100 \mathrm{~m}^{6}$	$100 \mathrm{mt}^{6}$	N／8 ${ }^{5}$	－	－	－
50 mph	886 \＃	250 ft	200 f	175 tt	125 ft	100 tr	－	－	－
55 mph	990 f	325 ft	276 fi	225 年	200 ft	126 f1	N／As	－	－
60 mph	1，100 tr	400 fl	350 \＃	325 t	275 If	200 n	$100 \mathrm{n}^{4}$	－	－
65 mph	1，200 \＃t	475 ft	450 ft	400 tt	350 ft	275 \＃t	200 tr	$100 \mathrm{mt}^{6}$	－
70 mph	1，250 ti	650 ft	525 nt	500 tt	450 ft	375 ft	275 t	150 nt	－
75 mph	1，360＊	650 ft	625 ft	600\％	650 ft	47511	375 年	250 ft	100 tr

DUAL STOP SIGN COUNTERMEASURE（SUPPLEMENTAL）

A short－term countermeasure upgrades the stop signs on Greens Market Road to mitigate 2 angle crashes and a left turn crash at the Kathleen Road intersection．Three upgrades to the stop signs are summarized below：
－Install dual stop signs（6 ft height to bottom of sign）on both approaches of Greens Market Road． The existing traffic control consists of a single，right side mounted stop sign which meets MUTCD guidance．Dual stop signs are recommended to mitigate angle crashes．
－Relocate stop ahead warning signs on the Greens Market Road approach from 525 feet to 325 ft in accordance with Table 2C－4 of the MUTCD．
－An All－Way stop controlled（AWSC）intersection may be evaluated by Perry County to determine if AWSC warrants are met．Balanced delays on all approaches would be a factor in determining if AWSC is a desirable countermeasure to mitigate angle crashes．

BENEFIT COST ANALYSIS (SUPPLEMENTAL)

The SUPPLEMENTAL countermeasures while systemic are limited to a total segment length of 2.15 miles (2 segments) on Greens Market Road. The project data used to perform the Benefit Cost analysis is based on the following assumptions.

1. The crash dataset used to calculate the benefit cost ratio for the SUPPLEMENTAL countermeasures included two segments: mile 3.42 to 4.90 including the Kathleen Road intersection; mile 5.15 to 5.82 (not including the US Route 51/ IL 14 Road intersection). The subset of crashes within the SUPPLEMENTAL project limits consists of 10 crashes - another 3 crashes occurred within the PRIMARY project limits (MP 4.90-5.15). and are accounted for as part of a separate BC calculation.
2. The CMF for Install Advance Curve Warning Signs is proposed since signs do not exist on the horizontal curve having a radius of 1,300 feet.
3. Replace the aggregate shoulder with a 2 ft paved shoulder (full depth). Add a 2 ft graded shoulder where feasible within exiting right of way limits to stabilize the existing pavement and to reduce the frequency of overturn vehicles attributed to fore slopes.
4. Provide a minimum Traveled Way width of 20 feet which is permitted for resurfacing projects per BLR Figure 33-3B. (ADT <3,000 vehicles)
5. Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the travel lane as done for the existing condition. Greens Market Road is a not a designed bicycle route. No bicycle crashes were documented as part of the crash analysis.

The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies not limit themselves to use longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as Dix Irvington Road. Note that no bicycle crashes were reported during the 5 -year study period and Greens Market Road is not a designated bicycle route.

Non-performing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

The total cost for the overall 2.15 mile segment is estimated to be $\$ 636,170$ with a Benefit Cost ratio of 3.70, calculated from the IDOT HSIP BOC analysis tool. CMFs for the stop sign upgrades at Kathleen Road are not included in the Benefit Cost calculations resulting in a conservative $B C$ value.

A detailed cost estimate and BOC calculations are included as an attachment to this report.

Greater Egypt Safety Study

APPENDIX 02: AIRPORT ROAD

Please provide a detailed cost estimation for all countermeasures along with htis sumgear
4.1.6.AL. 1 - Pavement Treatments - Resurfacing alone does not fully match HSM SetingIFacility Type Criteria

The combined effect of multiple countermeasures is imited to 0.60 or the smallest CMF

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIAL CASE		¢
		$\frac{0}{\frac{0}{c}}$			$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\rightharpoonup}{\ddot{W}} \\ & \stackrel{\rightharpoonup}{I} \end{aligned}$												안	-			
Crash Severity	ALL	${ }^{\text {AG }}$	AN	FO	HO	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	OT
Fatal Crashes										1									1	0	1
A-Injury Crashes																1			0	0	1
B-Injury Crashes										1									0	0	1
C-Injury Crashes																			0	0	0
PDO Crashes				2					1										1	2	3

BENEFIT CALCULATIONS			COUNTERMEASURE COST CALCULATIONS						
COUNTERMEASURE	CMF*	Crash Type affected by this improvement	Unit Cost	Quantity	Units	Total Cost	Service Life	Present worth	EUAC **
4.1.3.S1.1 - Pavement Treatments - Add or Widen Paved Shoulder	0.77	ROR, FO, HO, OVT, SOD, SSD	\$537,546	1.07	Miles	\$575,174	15	\$575,174	\$51,750
4.1.9.S1.1 - Pavement Treatments - Install Rumble Strips (Shoulder)	0.67	FO, OVT	\$33,160	1.07	Miles	\$35,481	8	\$61,407	\$5,550
4.3.5.S1.1 - Pavement Markings - Place Edgeline and Centerine Markings	0.76	All	\$30,675	1.07	Miles	\$32,822	1	\$379,528	\$34,150
4.6.5.AL.1 - Curves - Install Advanced Curve Speed/Warning Sign	0.87	All	\$17,520	1	Unit Qnty	\$17,520	10	\$29,356	\$2,650
TOTAL BENEFIT					TOTA	OST			\$94,100
BENEFIT/ COST		ANNUAL NUMBER OF FATALITIES POTENTIALLY PREVENTED		0.08		TOTAL FATALITIES PREVENTED			0.40

* CMF = Crash Modification Factor
** EUAC = Estimated Uniform Annual Cost

COST ESTIMATE - AIRPORT ROAD - ALTERNATIVE 1

Please provide a detailed cost estimation for all countermeasures along with htis sumgear
4.1.6.AL. 1 - Pavement Treatments - Resurfacing alone does not fully match HSM SetingIFacility Type Criteria

The combined effect of multiple countermeasures is imited to 0.60 or the smallest CMF

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIAL CASE		¢
		$\frac{0}{\frac{0}{c}}$			$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\rightharpoonup}{\ddot{W}} \\ & \stackrel{\rightharpoonup}{I} \end{aligned}$												안	-			
Crash Severity	ALL	${ }^{\text {AG }}$	AN	FO	HO	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	OT
Fatal Crashes										1									1	0	1
A-Injury Crashes																1			0	0	1
B-Injury Crashes										1									0	0	1
C-Injury Crashes																			0	0	0
PDO Crashes				2					1										1	2	3

BENEFIT CALCULATIONS			COUNTERMEASURE COST CALCULATIONS						
COUNTERMEASURE	CMF*	Crash Type affected by this improvement	Unit Cost	Quantity	Units	Total Cost	Service Life	Present worth	EUAC **
4.1.3.S1.1 - Pavement Treatments - Add or Widen Paved Shoulder	0.77	ROR, FO, HO, OVT, SOD, SSD	\$720,566	1.07	Miles	\$771,006	15	\$771,006	\$69,350
4.1.9.S1.1 - Pavement Treatments - Install Rumble Strips (Shoulder)	0.67	FO, OVT	\$33,160	1.07	Miles	\$35,481	8	\$61,407	\$5,550
4.3.5.S1.1 - Pavement Markings - Place Edgeline and Centerine Markings	0.76	All	\$30,675	1.07	Miles	\$32,822	1	\$379,528	\$34,150
4.6.5.AL.1 - Curves - Install Advanced Curve Speed/Warning Sign	0.87	All	\$17,520	1	Unit Qnty	\$17,520	10	\$29,356	\$2,650
TOTAL BENEFIT					TOTA	OST			\$111,700
BENEFIT/ COST		ANNUAL NUMBER OF FATALITIES POTENTIALLY PREVENTED		0.08		TOTAL FATALITIES PREVENTED			0.40

* CMF = Crash Modification Factor
** EUAC = Estimated Uniform Annual Cost

COST ESTIMATE - AIRPORT ROAD - ALTERNATIVE 1 \& 2

CASE_ID	YEAR	INJ	FAT	COLL_TYPE	WEATH ER	LIGHTING	SURF COND	MILE	DRIVER_1	$\begin{aligned} & \text { VEH1_ } \\ & \text { TYPE } \end{aligned}$	VEH1 DIR	VEH1 MANUV	VEH1 EVNT1	VEH1_LOC1	VEH1_EVNT2	VEH1_LOC2	$\begin{aligned} & \text { VEH1_ } \\ & \text { EVNT3 } \end{aligned}$	$\begin{gathered} \text { VEH2_ } \\ \text { DIR } \end{gathered}$	$\begin{aligned} & \text { VEH2_EV } \\ & \text { NT1 } \end{aligned}$	VEH2_LOC1	REC_TYPE	XCOORD	YCOORD
201501294669	15	0	0	Fixed Object	Clear	Dark, lit Road	Dry	2.74	Normal	Passenger	East	Avoiding Veh/ Objs	Ran Off Roadway	Off Pvmt Right	Guardrail Face	Off Pvmt Right					PD	2568169.645100	402196.69065300
201601214023	16	0	0	Fixed Object	Rain	Daylight	Wet	2.09	Other/ Unknown	Passenger	East	Straight Ahead	Ran Off Roadway	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left	Culvert				PD	2564723.395870	402136.77791800
201501278335	15	0	0	Overturned	Clear	Daylight	Wet	2.23	Normal	Pickup	West	Skidding/ Ctrl Loss	Overturn	off Pvmt Left							PD	2565459.326150	402151.13990200
201601282329	16	1	1	Pedestrian	Clear	Darkness	Dry	2.74	Normal	Pickup	West	Straight Ahead	Ped	On Pvmt (Rdwy)	Pedestrian	On Pvmt (Rdwy)		N/A	N/A	N/A	Fatal	2568164.551810	402196.61753500
201801339737	18	1	0	Pedestrian	Clear	Daylight	Dry	2.13	Normal	Bus over 15 seats	West	Ent Traffic Lane Fr	Ped	Other				N/A	N/A	N/A	B-Injury	2564944.218760	402141.15370900
201801357629	18	1	0	Sideswipe Opp Direction	Clear	Daylight	Dry	2.93	Normal	Motorcycle	East	Ngoting A Curve	Mtr Veh In Traffic	On Pvmt (Rdwy)				West	Mtr Veh In Traffic	On Pavement (Roadway)	A-Injury	2569181.837880	402189.00658300

Airport Road

Jackson County
May 2021

INTRODUCTION

The 1.07-mile segment of Airport Road located within Jackson County was identified as the highest ranked segment as part of a Greater Egypt Regional Planning and Development Commission (Greater Egypt) safety analysis using the most current crash dataset (2014-2018). The study area extends from a point 0.27 miles east of New Era Road (MP 2.00) to US Route 51/ Illinois Avenue (MP 3.07).

Jackson County realigned Airport Road in 2018 west of the current study area. The Airport Road realignment project extended Flightline Road and New Era Road. A 5 ft bike path was also added along both sides of the 1.09 length of Airport Road. The typical section of the realigned roadway consisted of 2-12 ft lanes and 5 ft bike lanes.

The priority ranking performed for Jackson County was independent of a previous analysis performed by the IDOT Bureau of Safety Programs and Engineering (BSPE). IDOT 2017 safety analyses (2011-2015) identified a 1.8 -mile segment of Airport Road as Low Safety Tier extending east from N. Airport Road to US Route 51.

The IDOT Run Off the Road Initiative (RORI) identified several segments proposing a treatment to Add or Widen Paved Shoulders see limits (green line) shown in Figure 1. The Airport Road corridor was ranked above the following locations based on the 2020 dataset for various reasons:

Ava Road was ranked one position higher than Airport Road. However, the suggested countermeasure of edge line rumble strips already exists on the majority of the roadway.

Royalton Road was ranked one position below Airport Road. Crash frequency and type between the corridors were similar but PDOs

FIGURE 1: RORI SEGMENTS (JACKSON CO)
 were higher for Airport Road and Royalton Road has centerline and edge line markers whereas Airport Road does not.

Neunert Road was ranked below Airport Road. Airport Road corridor is a stronger safety candidate due to several crash types (K,_A and B) whereas Neunert Road only had a K crash (2014-1028 dataset).

EXISTING CONDITIONS

Airport Road provides east/west connectivity from IL 13 to US Route 51 in addition to access to the Southern Illinois Airport and National Guard. The roadway width is $19-21$ feet with no painted centerline or edge lines for the 1.07-mile length. An aggregate shoulder averages $0-2$ feet. The legal speed is 55 MPH. The roadway is a two-lane facility. Photos $1-5$ show the existing conditions within the study area.

The 2018 AADT is 1,450 vehicles of which 210 are trucks west of the US Route 51 intersection.
A factor that contributes to the safety performance of the corridor is the minimal shoulder width along the edge of pavement. The presence and type of a shoulder is variable within the project limits as shown in Photos 1-5. Pedestrians are present within this segment of roadway and visibility is restricted along the roadway due the vertical and horizontal curves.

1. The existing typical section consists of a pavement width of 19 feet and 1 ft shoulder width on the west end of the project limits - see Photo 1.

PHOTO 1: EB ROADWAY SECTION (MILE 2.10)

2. Photo $\mathbf{2}$ shows shoulder repairs along Airport Rd (north side of roadway).

PHOTO 2: SHOULDER REPAIR (MILE 2.45)

3. A crest vertical curve is shown in Photo 3. The roadway section is in a cut section. Sight distance is less than the legal speed of the roadway.

PHOTO 3: VERTICAL CURVE (MILE 2.80)

4. Photo 4 shows an existing bridge at the east end of the study area. The width of the existing deck is 26 feet. Note the advance stop sign in the eastbound direction near MP 2.9. Opposite the Stop Ahead sign is a special Hill Blocks View sign (WB Airport Road).

```
PHOTO 4: EXISTING BRIDGE (MILE 2.85)
```


5. Photo 5 shows a horizontal curve (230 ft radius) exists near the east end of the study area. No advance curve warning signs exist for this curve. Chevrons delineate the outside of the curve.

The approximate location of each photo is numbered on Figure 2.

SAFETY ANALYSIS

A total of 6 crashes occurred within the study area over a 5-year period (2015-2018). The severity of crashes by year is summarized on Figure 3. Injury/fatality crashes account for 50 percent of all crashes over the 5-year period. Two pedestrians were struck resulting in a fatality at mile 2.74 of the study area.

A fatality occurred Friday, November 25, 2016 at 7PM when a hit/run driver struck two pedestrians walking WB on Airport Road near Mile 2.74. The vertical curve shown in Photo 3 was a contributing factor to the crash. A second WB pedestrian injury occurred on Friday, October 27, 2018 at 12PM near Mile 2.13 resulting in a Type B injury.

No crashes occurred in years 2017 and 2019 as shown in Figure 3.

Figure 4 shows the frequency of crashes by type of crash. Pedestrian crashes within the study area (1F, 2 injury or 43%) are over represented when compared to the IDOT Emphasis Area analysis (2014-2018) for Jackson County (\%F, 3 injury or 3\%). One fatal and two injuries resulted from crashes involving pedestrians over the 5year study period.

Road Departure crashes (fixed object, overturning, sideswipe opposite direction) comprise 76.9% of all crashes within the study area. The Road Departure crashes resulted in one Type A injury.

Figure 5 shows a histogram of the location

and crash type. The majority of crashes are single vehicle crashes where the vehicle leaves the roadway (3) or strikes a pedestrian (2). The Road Departure crashes are distributed across all segments of the study area regardless of the presence of horizontal curves. Note that no crashes occurred within the 2.25 and 2.50 segment of the study area.

Figure 6 shows the severity of crashes are not focused on a specific location but rather are distributed across the length of the study area. This information may help determine if more targeted countermeasures can be implemented even if the countermeasures are systemic by design.

FIGURE 5: LOCATION FREQUENCY BY CRASH TYPE

FIGURE 6: LOCATION FREQUENCY BY SEVERITY

COUNTERMEASURES

Countermeasures are identified that improve safety performance by focusing on the crash types having the greatest potential for mitigation. The proposed countermeasures are directly linked to historical crash patterns. While the low and moderate cost countermeasures are systemic in nature, the countermeasures are targeted to segments having a higher crash frequency and segments with horizontal and vertical curves. Two primary countermeasures are proposed as summarized below:

1. Construct bike lane/ pedestrian (5 ft width) on roadway segment to mitigate both Roadway Departure crashes and Pedestrian crashes.
2. Upgrade pavement markings (edge line markings), curve warning signs/chevrons, and advance stop ahead sign placement that are consistent with the Manual of Uniform Traffic Control Devices (MUTCD). Compliance with the MUTCD will reduce driver workload thus improve safety performance.

The total length of improvements is 1.05 miles.

EAST CURVE COUNTERMEASURE (MILE 2.85-3.00)

The horizontal curve shown in Photos 5 has a 230 ft radius. The following countermeasures for the horizontal curve at the east end of the study area is recommended:

- Install curve warning, speed advisory plaque, and replace chevrons in accordance with Table 2C5 of the MUTCD along the existing horizontal curve on Airport Road. A ball bank study to confirm the advisory speed at this location is recommended.

Table 2C-5. Horizontal Alignment Sign Selection

Type of Horizontal Alignment Sign	Difference Between Speed Limit and Advisory Speed				
	5 mph	10 mph	15 mph	20 mph	25 mph or more
Tum (W1-1), Curve (W1- 2), Reverse Turn (W1-3), Reverse Curve (W1-4), Winding Road (W1-5), and Combination Horizontal Alignment/Intersection (W10-1) (see Section 2C. 07 to dotermine which sign to use)	Recommended	Required	Required	Required	Required
Advisory Speed Plaque (W13-1P)	Recommended	Required	Required	Required	Required
Chevfons (W1-8) and/or One Direction Large Arrow (W1-6)	Optional	Recommended	Required	Required	Required
Exit Speed (W13-2) and Ramp Speed (W13-3) on oxit ramp	Optional	Optional	Recommended	Required	Required

Note: Required means that the sign and/or plaque shall be used, recommended means that the sign and/or plaque should be used, and optional means that the sign and/or plaque may be used.

See Section 2C.06 for roadways with less than 1,000 ADT

- Relocate advance warning signs no more than 225 feet in advance of the curves to be consistent with Table 2C-4 of the Manual of Uniform Traffic Control Devices (MUTCD). Advance warning signs do not exist in advance of the horizontal curves. Section 2C. 05 emphasizes that signs are not placed too far in advance of the condition.
－Relocate advance stop warning sign no more than 325 feet in advance of the US Route 51 intersection．

Table 2C－4．Guidelines for Advance Placement of Warning Signs

Posted or 85th－ Percentile Speed	Advance Placement Distance＇								
	Condtion A－ Spesd reduction and lane charging in heany tratic	Condition B：Deceleration to the listed advisory speed（mph）for the condtion							
		0^{3}	10^{4}	20^{4}	30^{4}	40^{4}	50^{4}	60^{4}	70^{4}
20 mph	225%	100 m	N（4）	－	－	－	－	－	－
25 mph	\＄25 管	100 m	NA ${ }^{\text {a }}$	N／A	－	－	－	－	－
30 mph	460 \％	100 mt	NA5	N／A ${ }^{\text {a }}$	－	－	－	－	－
35 mph	565 年	100 ft	NAS	N／A ${ }^{\text {S }}$	NA ${ }^{5}$	－	－	－	－
40 mph	670\％	125 tt	100 m	$100 \mathrm{~m}^{6}$	NA ${ }^{5}$	－	－	－	－
45 mph	775 垄	175 ！	125年	$100 \mathrm{~m}^{6}$	$100 \mathrm{mr}^{\circ}$	N A^{1}	－	－	－
50 mph	836 \％	250 ft	200 年	175 ft	126 fl	$100 \mathrm{~m}^{6}$	－	－	－
55 mph	980 ${ }^{\text {t }}$	325 ft	275 会	225 ft	200 ft	125 年	N／A ${ }^{\text {s }}$	－	－
60 mph	1，100 \＃	400 ft	350 m	325 t	275 n	200 \％	$100 \mathrm{~m}^{4}$	－	－
65 mph	1.200 \％	475 fl	450者	400 ft	350 fl	275 年	200 ft	100 mt	－
70 mph	1.280 \＃	550 ll	525年	500\％	450 fl	375 勫	275 \％	150 ff	－
75 mch	1,350 t	650 ft	625 年	600 ft	550 ft	475 th	375 ft	250 ft	100 告

This countermeasure mitigates a sideswipe meeting crash involving a motorcycle and resulting in a type A－injury．

PAVED SHOULDER COUNTERMEASURE（MILE 2．0－3．05）

The majority of crashes（ 5 of 6 crashes）occur beyond the limits of the horizontal curves suggests other factors contribute to the safety performance on Airport Road（i．e．，edge of pavement drop offs and／or lack of shoulders）．A medium－term countermeasure constructs paved shoulders to address pavement drop offs and to better accommodate pedestrians／bicyclists．

The following targeted countermeasures are proposed on the Airport Road corridor：
－Replace the aggregate shoulder with a 5 ft paved shoulder（full depth）．Shoulder width to be reduced to 3 feet across the existing bridge．
－Provide a minimum Traveled Way width of 20 feet which is permitted for resurfacing projects per BLR Figure 33－3B．（ADT＜3，000 vehicles）
－Add a 2 ft graded shoulder where feasible within exiting right of way limits to stabilize the existing pavement and to reduce the frequency of overturn vehicles attributed to fore slopes．In cut sections，add curb to enable grading within the existing right of way．
－Add longitudinal rumble strips to increase driver attention．
Context Sensitive Design（CSD）principles are applicable to the Airport Road corridor due to the impacts associated with design guidance provided by the BLR for reconstruction projects．The development of a context sensitive countermeasure that is systemic is based on guidance from the National Cooperative

Highway Research Program (NCHRP) Report 480: A Guide to Best Practices for Achieving Context Sensitive Solutions (2002) and the AASHTO Highway Safety Design and Operations Guide (1997).

Of the broad categories of transportation issues that are most applicable to the Airport Road study area, improving safety performance is the purpose of the project. Two aspects are to be addressed when evaluating safety countermeasures: nominal and substantive safety. Both nominal and substantive safety are important to include in the decision-making process.

1) Nominal Safety - A countermeasure's adherence to design criteria and/or standards as published in the AASHTO policy, the Manual of Uniform Control Devices (MUTCD) and/or the BLR. The existing typical section does not meet IDOT design criteria for traveled way width (20 ft , minimum) and shoulder widths (BLR Figure 33-3B). The preferred design criteria traveled way (22 feet) and shoulder (6 feet) widths on reconstruction projects (BLR Figure 32-2B) are not met.
2) Substantive Safety - The actual performance of the Airport Road corridor is compared to similar facilities to assess relative performance. Crash statistics for corridors having a similar typical section as Airport Road (i.e., Fox Road, parallel roadway to the north) do not appear on the priority ranking for the Greater Egypt Regional Planning and Development Commission (Greater Egypt) safety analysis or the 2017 Safety Tier for segments.

In the case of Airport Road, the substantive safety performance of Airport Road is not attributed to design criteria being noncompliant as outlined in BLR Figure 32-2B. Rather, the substantive safety performance of Airportt Road is worse than comparable roadways due to the presence of pedestrian traffic. Overturn and Fixed Object crashes also would benefit from the increased shoulder width by mitigating factors attributed to pavement drop offs.

Figure 7 shows a decision matrix of nominal and substantive safety countermeasures.

FIGURE 7: APPLYING SAFETY TO PROBLEM DEFINITION AND SOLUTIONS

	Nominal Safety Criteria		
		Meets	Does Not Meet
	$\begin{aligned} & \frac{8}{\mathbf{0}} \\ & \frac{\mathbf{w}}{2} \end{aligned}$	- Infrastructure improvements only (no need or justification for geometric revisions) based on safety	- 3R criteria may be considered - Incorporate only low cost safety enhancements - "Upgrade" to full standards may not be cost effective (consider design exceptions to avoid costs and impacts)
		- Targeted safety improvements (low or high cost depending on extent of problem) - Focus on cost-effective solutions to safety problems	- Complete reconstruction to current criteria probably warranted ($n o$ or very minimal design exceptions) - Consider special targeted safety enhancements

The proposed typical section is consistent with the guidance in the IDOT Bureau of Local Roads \& Streets manual (BLR) in order to maximize the length of safety related improvements within the existing ROW width (50 feet). Complete reconstruction is not recommended since the proposed countermeasures mitigate specific safety performance issues and is consistent with Figure 33-3B of the BLR for roadways having an ADT <2,000 vehicles: Figure 8 shows the proposed typical section for Airport Road.

BENEFIT COST ANALYSIS

Countermeasures are proposed on Airport Road to improve the safety performance of the corridor. The project data used to perform the benefit cost analysis is based on the following assumptions.

1. The crash dataset was scrubbed to include only Road Departure crashes (Fixed Object,Overturning, Sideswipe Meeting) for the benefit cost analysis.
2. The Advance Curve Warning Signs for the horizontal curve near MP 2.95 would mitigate a sideswipe meeting crash in addition to the shoulder widening with longitudinal rumble strips.
3. The removal of the vertical curve near MP 2.74 would improve visibility of pedestrians. The vertical curve was a contributing factor of the pedestrian crash resulting in a fatality. However, the CMF for profile improvements was not considered to be a cost effective countermeasure. Benefits achieved with reprofiling can be achieved with the proposed shoulder widening countermeasure.
4. Minor pavement widening of the traveled way is proposed to improve safety performance of the existing roadway having an effective width that varies between 19 to 21 feet +/-. The proposed shoulder width is an average of pavement widening for the traveled way and proposed shoulder.
5. Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to use the new shoulder. While Airport Road is a not a designed bicycle route, the standard bike lane width which matches the existing typical section west of the study area is also available for pedestrian use.

Two alternatives were considered for the benefit cost analysis:

1. ALTERNATIVE 1: Shoulder widening (5 ft), minimal traveled way widening ($0-1 \mathrm{ft}$) to achieve a minimum traveled way width of 20 ft per BLR Figure 33-3B (note 2), and curve warning signing upgrades. The countermeasures listed above were applied to the length of the study area as described in the Countermeasures section. The total cost for the 1.07 mile segment is estimated to be $\$ 618,901$ with a Benefit Cost ratio of 5.70 calculated from the IDOT HSIP BOC analysis tool.
2. ALTERNATIVE 1+2: Resurfacing of unimproved roadway. Resurfacing of the existing bituminous treated pavement is proposed to avoid construction joints within the traveled way. The total cost for the 1.07 mile segment is estimated to be $\$ 801,921$ with a Benefit Cost ratio of 4.80 calculated from the IDOT HSIP BOC analysis tool.

If safety funding is not available for resurfacing of the roadway in conjunction with the new shoulders, Jackson County is prepared to separately fund pavement rehabilitation of the remaining pavement for the 1.07-mile segment. Resurfacing of the existing roadway using local funding will effectively leverage safety funds for safety specific countermeasures. The proposed countermeasures would be constructed in conjunction with the locally funded resurfacing project Combining the proposed shoulder improvements as part of a larger pavement rehabilitation project will
 achieve an economy of scale.

Greater Egypt Safety Study

APPENDIX 02: JEF RICHVIEW ROAD

Please provide a detailed cost estimation for all countermeasures along with this summmary sheet.
The combined effect of multiple countermeasures is isinited to 0.60 or the smallest CMF

		CRASH TYPE																			
		旁		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$									$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{y}{w} \\ & \stackrel{\varpi}{\dddot{W}} \end{aligned}$					皆		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\omega} \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \end{aligned}$	든
Crash Severity	ALL	AG	AN	FO	HO	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes				1															0	0	1
A-Injury Crashes				5					1										0	0	6
B-Injury Crashes				2					3										0	0	5
C-Injury Crashes				1															0	0	1
PDO Crashes				10					1										0	0	11

BENEFIT CALCULATIONS LOCAL SEGMENTS BENEFIT COST ANALYSIS COUNTERMEASURE COST CALCULATIONS									
COUNTERMEASURE	CMF*	Crash Type affected by this improvement	Unit Cost	Quantity	Units	Total Cost	Senice Life	Present worth	EUAC **
4.1.3.S1.1 - Pavement Treatments - Add or Widen Paved Shoulder	0.87	ROR, FO, HO, OVT, SOD, SSD	\$224,049	4.15	Miles	\$929,803	15	\$929,803	\$83,650
4.1.9.s1.1 - Pavement Treatments - Install Rumble Strips (Shoulder)	0.67	Fo, ovt	\$27,995	4.15	Miles	\$116,180	8	\$201,072	\$18,100
4.6.7.7.81.1 - Curves - Install chevron signs on horizontal curves	0.84	FO, HO, OtherNC, Othero, OVT, SSD, SOD	\$15,200	1	Unit Qnty	\$15,200	10	\$25,469	\$2,300
		All							
TOTAL BENEFIT					tota				\$104,050
BENEFIT/ COST ${ }^{\text {a }}$ (8.20		ANNUAL NUMBER OF FATALITIES POTEN	EVENTED	0.09		TOTAL	TALITIES P	EVENTED	0.45

* CMF = Crash Modification Factor
* EUAC = Estimated Uniform Annual Cost

Project: E. Richview Road (Woodlawn to Shiloh)
Description: Pre-Design Estimate

Estimate By:	BMB (CMT)	$4 / 23 / 2021$
Checked By:	SPH (CMT)	$4 / 23 / 2021$

Project \#:
Municipality
Road Dist: Nine
County: Jefferson
Section:

Measseges provide a detailed cost estimation for all countermeasures along with this summary sheet.
The combined effect of multiple countermeasures is is inited to 0.60 or the smallest CMF

		CRASH TYPE																	SPECIAL CASE		
		$\stackrel{\text { \% }}{\text { ¢ }}$	產	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\mathrm{x}} \\ & \stackrel{⿺}{4} \end{aligned}$	$\begin{aligned} & \bar{\delta} \\ & \stackrel{\rightharpoonup}{\ddot{W}} \\ & \stackrel{\rightharpoonup}{I} \end{aligned}$									$\begin{aligned} & \frac{5}{5} \\ & \stackrel{y}{5} \\ & \stackrel{\rightharpoonup}{\bar{I}} \end{aligned}$				-			-
Crash Severity	ALL	AG	AN	FO	HO	LT	OtherNC	OtherO	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes																			0	0	0
A-Injury Crashes				1					1										0	0	2
B-Injury Crashes									1										0	0	1
C-Injury Crashes																			0	0	0
PDO Crashes				3															0	0	3

LOCAL SEGMENTS BENEFIT COST ANALYSIS									
BENEFIT CALCULATIONS			COUNTERMEASURE COST CALCULATIONS						
COUNTERMEASURE	CMF*	Crash Type affected by this improvement	Unit Cost	Quantity	Units	Total Cost	Service Life	Present worth	EUAC "*
4.1.3.S1.1 - Pavement Treatments - Add or Widen Paved Shoulder	0.91	ROR, FO, HO, OVT, SOD, SSD	\$243,021	2.1	Miles	\$510,345	15	\$510,345	\$45,950
4.1.9.S1.1 - Pavement Treatments - Install Rumble Strips (Shoulder)	0.67	Fo, ovt	\$30,210	2.1	Miles	\$63,440	8	\$109,795	\$9,900
		All							
		All							
TOTAL BENEFIT						OST			\$55,850
BENEFIT/ COST		ANNUAL NUMBER OF FATALITIES POTENT	VENTED	0.00		TOTAL	TALITIES P	VENTED	0.00

* CMF = Crash Modification Factor
*EUAC = Estimated Uniform Annual Cost

COST ESTIMATE - E. RICHVIEW ROAD - SUPPLEMENTAL

Project: E. Richview Road (Woodlawn to Shiloh)
Description: Pre-Design Estimate

4/23/2021
4/23/2021

Project \#:
Municipality:
Road Dist: Nine
County: Jefferson
Section:

CASE_ID	YEAR	INJ	FAT	COLL_TYPE	WEATH ER	LIGHTING	SURF_ COND	MILE DRIVER_1	VEH1_TYPE	$\begin{gathered} \text { VEH1_SPE } \\ \mathrm{CL} \end{gathered}$	VEH1 _DIR	VEH1_ MANUV	VEH1_EV NT1	VEH1_LOC1	VEH1_EVNT2	VEH1_LOC2	VEH1_ EVNT3	VEH1_LOC3	REC_TYPE	XCOORD	YCOORD
201901482688	19	1		0 Overturned	Clear	Daylight	Dry	4.20 Normal	SUV	Personal	East	Skid/Ctrl Loss	Overturn	On Pvmt (Rdwy)					B-Injury	2610600.506450	628236.35546600
201901145652	19	0		0 Fixed Object	Clear	Darkness	Ice	Other/ 4.21 Unknown	Passenger	Personal	East	Skid/Ctrl Loss	Other Fxd Obj	Off Pvmt Left					PD	2610655.419730	628237.90717900
201501251289	15	6		0 Fixed Object	Clear	Darkness	Dry	4.44 Normal	Passenger	Personal	South	Straight Ahead	Ran Off Roadway	Other	Ditch/ Embankment	Other			A-Injury	2611854.774840	628241.73429000
201601456143	16	0		0 Fixed Object	Clear	Darkness	Dry	5.29 Normal	Pickup	Personal	North	Straight Ahead	Ran Off Roadway	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left			PD	2615943.457960	626600.14340000
201701361838	17	0		0 Turning	Clear	Daylight	Dry	5.34 Normal	Bus 9 to 15 seats	Mass Transit	South	Turning Left	Mtr Veh In Traffic	$\begin{gathered} \text { On Pvmt } \\ \text { (Rdwy) } \end{gathered}$					PD	2616141.584540	626479.94027700
201501424744	15	0		0 Fixed Object	Clear	Darkness	Dry	Other/ 5.50 Unknown	Passenger	Personal	West	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Left					PD	2616879.526100	626038.90843600
201501330382	15	1		0 Overturned	Clear	Daylight	Dry	6.09 Normal	Motorcycle	Personal	East	Straight Ahead	Overturn	Off Pvmt Left					A-Injury	2619820.512560	625123.42090600
201701381873	17	1		0 Overturned	Clear	Daylight	Dry	6.33 Normal	SUV	Personal	East	Straight Ahead	Ran Off Roadway	Off Pvmt - Left					A-Injury	2621067.461650	625174.38901100
201701488268	17	0		0 Front to Rear	Clear	Daylight	Dry	6.34 Normal	SUV	Personal	North	Slow/Stop In Traffic	Mtr Veh In Traffic	On Pvmt (Rdwy)					PD	2621112.748550	625191.68375200
201901483186	19	0		0 Fixed Object	Cldy/ Ovrcst	Darkness	Wet	6.34 Normal	Passenger	Personal	North	Turning Right	Ran Off Roadway	Off Pvmt - Left	Ditch/ Embankment	Off Pvmt Left			PD	2621112.748550	625191.68375200
201801412566	18	0		0 Overturned	Snow	Darkness	Snow or Slush	6.35 Normal	Passenger	Personal	East	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Left	Overturn	Off Pvmt Left	Ditch/ Embkmt	Off Pavement Left	PD	2621185.179390	625220.44649800
201501300656	15	0		0 Fixed Object	Clear	Daylight	Ice	6.46 Normal	Pickup	Personal	East	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Right	Tree or Shrub	Off Pvmt Right			PD	2621725.862470	625351.91608600
201901215742	19	1		0 Fixed Object	Clear	Darkness	Dry	Other/ 6.47 Unknown	Passenger	Personal	West	Straight Ahead	Ran Off Roadway	Off Pvmt Right	Ditch/ Embankment	Off Pvmt Right			A-Injury	2621761.889250	625355.53354300
201501300649	15	1		0 Fixed Object	Clear	Darkness	Ice	6.59 Normal	Pickup	Personal	East	Straight Ahead	Ran Off Roadway	Off Pvmt Right	Ditch/ Embankment	Off Pvmt Right			B-Injury	2622426.190200	625427.30952000
201701435380	17	1		0 Fixed Object	Clear	Daylight	Dry	6.59 Normal	suv	Personal	West	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left			A-Injury	2622427.974250	625427.45898100
201601413047	16	1		0 Overturned	Clear	Daylight	Dry	6.60 Normal	Passenger	Personal	West	Skid/Crrl Loss	Overturn	Off Pvmt Right					B-Injury	2622433.675740	625428.12843500
201901310965	19	1		0 Turning	Clear	Daylight	Dry	6.68 Normal	Passenger	Personal	West	Straight Ahead	Mtr Veh In Traffic	On Pvmt (Rdwy)					B-Injury	2622868.920030	625478.17836300
201701271375	17	0		1 Fixed Object			Dry	Alcohol 6.84 Impaired	Pickup	Personal	West	Negotiate A Curve	Ran Off Roadway	Off Pvmt Right	Ditch/ Embankment	Off Pvmt Right	Overturn	Off Pavement Right	Fatal	2623701.205650	625494.49336100
201801438944	18	0		0 Fixed Object	Clear	Daylight	Dry	6.85 Normal	Passenger	Personal	East	Avoiding Veh/Obj	Ran Off Roadway	Off Pvmt - Right	Ditch/ Embankment	Off Pvmt Right			PD	2623774.884560	625476.74238000
201901145511	19	0		0 Fixed Object	Clear	Darkness	Ice	6.86 Normal	Pickup	Personal	East	Skid/Ctrl Loss	Other Fxd Obj	On Pvmt (Rdwy)					PD	2623801.899180	625469.86516800
201501336924	15	2		0 Fixed Object	Clear	Daylight	Dry	6.96 Normal	SUV	Personal	East	$\begin{aligned} & \text { Skid/Ctrl } \\ & \text { Loss } \end{aligned}$	Ran Off Roadway	Off Pvmt Right	Guardrail End	Off Pvmt Right	Tree or Shrub	Pavement - Right	A-Injury	2624302.362510	625322.95792700

CASE_ID	YEAR	INJ	FAT	COLL_TYPE	WEATH ER	LIGHTING	SURF_ COND	MILE DRIVER_1	VEH1_TYPE	$\underset{\mathrm{cL}}{\text { VEH1_SPE }}$	VEH1 _DIR	VEH1 MANUV	VEH1_EV NT1	VEH1_LOC1	VEH1_EVNT2	VEH1_LOC2	VEH1_ EVNT3	VEH1_LOC3	REC_TYPE	XCOORD	YCOORD
201801418443	18	1		0 Overturned	Clear	Daylight	Dry	8.27 Illness	Pickup	Personal	West	Straight Ahead	Ran Off Roadway	Off Pvmt Right					B-Injury	2630735.883110	622884.08513800
201901152671	19	0		0 Fixed Object	Snow	Darkness	Snow or Slush	8.38 Normal	SUV	Personal	West	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Right	Ditch/ Embankment	Off Pvmt - Right			PD	2631323.606940	622753.26455900
201801423522	18	0		0 Fixed Object	Clear	Darkness	Wet	Other/ 8.46 Unknown	Pickup	Personal	West	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Right	Ditch/ Embankment	Off Pvmt Right	Fence	Pavement Right	PD	2631717.476300	622673.98586600
201901199180	19	1		0 Fixed Object	Clear	Darkness	Dry	$\begin{aligned} & \text { Removed } \\ & 8.51 \text { By EMS } \end{aligned}$	Passenger	Personal	Unkwn	Straight Ahead	Other Fxd Obj	Off Pvmt Right					A-Injury	2632010.811430	622599.76141800
201501325183	15	1		0 Overturned	Clear	Darkness	Dry	Other/ 8.66 Unknown	Passenger	Personal	West	Changing Lanes	Overturn	Off Pvmt Left	Ditch/ Embankment	Off Pvmt Left			B-Injury	2632717.765720	622336.51220500
201801150309	18	0		0 Other Object	Clear	Daylight	Dry	Other/ 8.72 Unknown	Unknown	Unknown	West	Other	Falling Load	On Pvmt (Rdwy)					PD	2633000.978020	622186.33521900
201701473891	17	0		0 Fixed Object	Clear	Daylight		8.81 Normal	Passenger	Personal	South- East	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Right	Tree or Shrub	Off Pvmt - Right			PD	2633431.092260	621944.37312400
201601050236	16	0		0 Turning	Other	Daylight	Ice	9.39 Normal	Bus 9 to 15 seats	Mass Transit	Southeast	Straight Ahead	Mtr Veh In Traffic	On Pvmt (Rdwy)					PD	2636108.721470	620451.76274700
201901310192	19	1		0 Fixed Object	Clear	Daylight	Dry	Drug 9.43 Impaired	Passenger	Personal	East	Straight Ahead	Ran Off Roadway	Off Pvmt - Right	Fence	Off Pvmt Right			B-Injury	2636306.017110	620342.46977000
201901349012	19	0		0 Fixed Object	Clear	Daylight	Dry	9.68 Normal	SUV	Personal	East	Straight Ahead	Ran Off Roadway	Off Pvmt Right	Fence	Off Pvmt Right	Fire/Explo sion	Pavement Right	PD	2637392.545550	619657.19867100
201801451689	18	0		0 Fixed Object	Clear	Daylight	Dry	9.80 Normal	Passenger	Personal	West	Straight Ahead	Ran Off Roadway	Off Pvmt Right					PD	2637896.145400	619263.31189100
201901216966	19	2		0 Fixed Object	Clear	Daylight	Dry	10.04 Normal	Passenger	Personal	East	Skid/Ctrl Loss	Ran Off Roadway	Off Pvmt Left	Ran Off Roadway	Off Pvmt Right	Tree or Shrub	Pavement - Right	C-Injury	2638901.593730	618473.38365300
201601500604	16	0		0 Fixed Object	Rain	Darkness	Ice	10.14 Normal	SUV	Personal	West	Unknown	Other Fxd Obj	Off Pvmt Right	Ditch/ Embankment	Off Pvmt Right			PD	2639293.113180	618144.25247100
201901169606	19	1		0 Front to Front	Snow	Daylight	Snow or Slush	10.35 Normal	Pickup	Personal	West	Slow/Stop In Traffic	Mtr Veh In Traffic	On Pvmt (Rdwy)					A-Injury	2640055.763260	617328.63291100
201901374718	19	1		0 Fixed Object	Clear	Darkness	Dry	Alcohol 10.37 Impaired	Passenger	Personal	East	Straight Ahead	Ran Off Roadway	Off Pvmt - Right	Guardrail Face	Off Pvmt Right	Guardrail Face	Pavement - Left	A-Injury	2640125.490620	617248.67081700
201501439353	15	0		0 Fixed Object	Clear	Daylight	Dry	10.39 Normal	Passenger	Personal	West	Avoiding Veh/Obj	Other Fxd Obj	Off Pvmt Right					PD	2640183.248790	617182.43500700

	East project limits --2' paved shoulder and warning signs (6.27-10.42) included with PRIMARY countermeasures
	Omit from BC analysis West project limits $--2 ' ~ p a v e d ~ s h o u l d e r ~(4.17-6.27) ~ i n c l u d e d ~ w i t h ~ S U P P L E M E N T A L ~ c o u n t e r m e a s u r e s ~$

E. Richview Road

 Jefferson CountyMay 2021

INTRODUCTION

A 6.25-mile segment of E. Richview Road was identified as the highest ranked segment within Jefferson County as part of a Greater Egypt Regional Planning and Development Commission (Greater Egypt) safety analysis using the most current crash dataset (2014-2018). Two intersections within the study area were also ranked within the top 15 locations within the county: the Woodlawn Lane intersection (rank \#7, mile 6.40) and the Seven Oaks Lane/ CR 800E intersection (rank \#15, mile 8.40).

The priority ranking performed for Jefferson County was independent of a previous analysis performed by the IDOT Bureau of Safety Programs and Engineering (BSPE). Various segments and intersections also have been identified by IDOT as priority safety locations:

- IDOT 2017 safety analyses (2011-2015) identified a 1.2-mile segment of Richview Road as one of three Critical Safety Tier segments (17-9-1-0003) extending east from the Woodlawn Ln intersection. A Medium Safety Tier was also identified on a 2.2 -mile segment between the Fairdrive Lane/ CR 400E intersection (mile 4.21) and the Woodlawn Lane intersection.
- The Shiloh Lane (mile 10.38) and the N. Drivers Lane/ CR 825E (mile 8.68) intersections were ranked in 2017 as Medium Safety Tier intersections in the county. There were no High or Critical Safety Tier intersections within the county jurisdiction.
- The IDOT Run Off the Road Initiative (RORI) identified a 2.4-mile segment on E. Richview Road between N. Boyd Lane (mile 7.95) and N. Shiloh Drive (mile 10.38). The suggested countermeasure is to Add or Widen Paved Shoulders - see limits (green line) in Figure 1.

FIGURE 1: RORI SEGMENT ON RICHVIEW ROAD

The Greater Egypt priority rankings using 2014-2018 crash data, the correlation to the 2017 Safety Tier lists and the RORI output were factors to submit an application for safety funding on E. Richview Road.

EXISTING CONDITIONS

Richview Road is a county route (CR 10) providing east/west connectivity from Mt Vernon to Irvington and points further north via US Route 51 . The roadway width is 22 feet with a painted centerline and edge lines for the 6.25 -mile length. An aggregate shoulder width is in a range between $0-4$ feet. The legal speed is 55 MPH . Three No Passing zones exist within the study area: 1) a horizontal curve near Birmingham Lane (0.23 mile long), a horizontal curve near Seven Oaks Lane (0.44 miles long) and, 2) a crest vertical curve east of Woodlawn Drive (0.38 miles long).
A factor that contributes to the safety performance of the corridor is the lack of a shoulder and drop offs along the edge of pavement. The presence, type and condition of shoulder is variable within the project limits as shown in Photos 1-7. The shoulder treatments along the Richview Road segment ranges from no shoulder, aggregate shoulder, to a paved shoulder at driveways depending upon the location.

Land use is a mix between residential, agricultural and undeveloped parcels. Location of photos and other items of interest are shown on Figure 2. The 2016 AADT is 2,350 vehicles of which 160 are trucks west of the Shiloh Road intersection. The 2016 AADT is 1,600 vehicles (110 trucks) east of the Woodlawn Drive intersection.

```
PHOTO 1: SHOULDER DROP-OFF EAST OF FAIRDRIVE LANE (MILE 4.60)
```


PHOTO 2: SHOULDER DROP-OFF WEST OF BIRMINGHAM LN (MILE 5.70)

PHOTO 3: HORIZONTAL CURVE EAST OF WOODLAWN LN (MILE 6.40)

PHOTO 4: SHOULDER DROP OFF WEST OF SEVEN OAKS LN INTERSECTION (MILE 8.40)

PHOTO 5: NO SHOULDER/ DROP OFF EAST OF DRIVERS LN INTERSECTION (MILE 9.30)

PHOTO 6: SHOULDER DROP-OFF EAST OF E. BOYD RD INTERSECTION (MILE 9.95)

PHOTO 7 SHOULDER DROP-OFF AT SHILOH LANE LN INTERSECTION (MILE 10.38)

SAFETY ANALYSIS

A total of 37 crashes occurred within the study area over a 5-year period (2015-2019). The frequency of crashes by year is summarized on Figure 3. One fatal crash occurred over the 5-year period.

Injury/fatal crashes represent 48.6% of the total crashes within the study area. All injury crashes comprise 9 Type A injuries, 7 Type B injuries, and 1 Type C injuries.

The IDOT Emphasis Area analysis (2014-2018) identified Road Departure crashes as the most frequent crash type resulting in Type A injuries (50.4\%) and fatalities (64.3\%) on local roadways within IDOT District 9.

Road Departure crashes (fixed object, overturning) comprise 81.6% of all crashes within the study area.

FIGURE 3: CRASH SEVERITY BY YEAR
 The Road Departure crashes resulted in 1 Fatal, 8 Type A injuries, 6 Type B injuries and 1 Type C injury.

Figure 5 shows the location of crashes at 0.5 -mile intervals by crash type. The highest frequency of fixed object and overturning crashes occurred within the following two segments:

- Segment A (MP 6.1-6.6) having reverse curves with radii of 1,200 ft and of 1,000 feet, respectively. Reverse curve warning signs (W1-4) signs exist in advance of the curves.
- Segment B (MP 6.6 to 7.1) has a horizontal curve with a 1,300 ft radius. Curve warning signs (W12) exist in advance of the curve.

BLR Figure 29-3B suggests that a 7.5% superelevation rate would be required to meet a design speed of 55 MPH for a $1,275 \mathrm{ft}$ radius. The cross slope of the existing roadway is a reverse crown within Segment A which meets design criteria for 20 MPH .

While Road Departure crashes may be concentrated at smaller radii horizontal curves, they are distributed across all segments of the study area regardless of the presence of horizontal curves or the size of the curve. Note that no crashes occurred within the MP 4.6-5.1 segment the MP 7.1-8.1 segment.

Figure 6 shows the severity of crashes are not focused at a specific location but rather are distributed across the entire length of the corridor. This information may help determine where more targeted countermeasures can be implemented even if the countermeasures are systemic by design.

FIGURE 5: LOCATION FREQUENCY BY CRASH TYPE

FIGURE 6: LOCATION FREQUENCY BY SEVERITY

Countermeasures are identified that improve safety performance by focusing on the crash types having the greatest potential for mitigation. The proposed countermeasures are directly linked to historical crash patterns. While the low and moderate cost countermeasures are systemic in nature, the countermeasures are targeted to segments having a higher frequency of crashes. Two primary countermeasures are proposed as summarized below.

CURVE WARNING SIGN COUNTERMEASURE

The majority of overturning crashes occurred within the proximity of two locations having reverse horizontal curves.

- Segment A (MP 6.1-6.6) having reverse curves with radii of 1,200 ft and of 1,000 feet, respectively. Reverse curve warning signs (W1-4) signs exist in advance of the curves. No chevrons or advisory speed plaques exist at these locations despite the design speed of the existing horizontal alignments being more than 15 MPH lower than the legal speed of 55 MPH .
- Segment B (MP 6.6 to 7.1) has a horizontal curve with a $1,300 \mathrm{ft}$ radius. Curve warning signs (W1-2) exist in advance of the curve. No chevrons or advisory speed plaques exist at this location despite the design speed of the existing horizontal alignments being more than 15 MPH lower than the legal speed of 55 MPH.

A short-term countermeasure installs or upgrades curve warning signs and chevrons at horizontal curves to provide a warning to drivers about the edge of pavement. The installation of curve warning signs is a proven safety countermeasure. The following countermeasures for the curves between MP 6.1 and 7.1 are recommended, as a minimum:

1. Install reverse curve warning, speed advisory plaques, and/or chevrons in accordance with Table $\mathbf{2 C - 5}$ of the MUTCD. A ball bank study to confirm the advisory speed at these locations are recommended.

Table 2C-5. Horizontal Alignment Sign Selection

Type of Horizontal Alignment Sign	Difference Between Speed Limit and Advisory Speed				
	5 mph	10 mph	15 mph	20 mph	25 mph or more
Turn (W1-1), Curve (Wi- 2), Reverse Turn (W1-3), Reverse Curve (W1-4), Winding Road (W1-5), and Combination Horizomal Alignment/intersection (W10-1) (see Section 2C. 07 to determine which sign to use)	Recommended	Required	Required	Required	Required
Advisory Speod Plaque (W13-1F)	Recommended	Required	Required	Aequired	Required
Chevrons (W1-8) and/or One Direction Large Arrow (W1-6)	Optional	Recommended	Required	Required	Required
Exit Speed (W13-2) and Ramp Speed (W13-3) on exit ramp	Optional	Optional	Recommended	Reqquired	Required

Note: Required means that the sign and/or plaque shall be used, recommended means that the sign and/or plaque should be used, and optional means that the sign and/or plaque may be used.
See Section 2C,06 for roadways with less than 1,000 ADT.

2．Relocate advance warning signs no more than 225 feet in advance of the curves to be consistent with Table 2C－4 of the Manual of Uniform Traffic Control Devices（MUTCD）．Existing signs are located 750 feet in advance of the horizontal curves at some locations．Section 2 C .05 emphasizes that signs are not to be placed too far in advance of the condition．

Table 2C－4．Guidelines for Advance Placement of Warning Signs

Posted or 85th－ Percentile Speed	Advance Placement Distance ${ }^{\text {P }}$								
	Condtion A： Speed rectuction and lane charging h heary trame ${ }^{2}$	Condition B：Deceleration to the listed advisory speed（mph）for the condtion							
		$0{ }^{3}$	10^{4}	20^{4}	30^{4}	40^{4}	50^{4}	60^{4}	70^{4}
20 mph	225 \％	$100 \mathrm{mr}^{\circ}$	NA ${ }^{\text {a }}$	－	－	－	－	－	－
25 mph	\＄25 管	100 m	NA ${ }^{\text {a }}$	N／A	－	－	－	－	－
30 mph	460 \％	100 tr	NA ${ }^{\text {S }}$	N／A ${ }^{5}$	－	－	－	－	－
35 mph	566 tit	100 mb	N／A	NA ${ }^{5}$	NA ${ }^{5}$	－	－	－	－
40 mph	670 \％	125 tt	100 ${ }^{\text {c }}$	$100 \mathrm{tr}^{6}$	NA ${ }^{5}$	－	－	－	－
45 mph	775 甥	175 If	125 圱	$100 \mathrm{~m}^{\text {t }}$	$100 \mathrm{~m}^{6}$	NA	－	－	－
50 mph	836 \％	250 ft	200 年	175 ft	125 ft	$100 \mathrm{~m}^{\text {c }}$	－	－	－
55 mph	990\％	325 H	275 tit	225 t	200 ft	125 t	N／A ${ }^{\text {S }}$	－	－
60 mph	1，100	400 fl	350 ${ }^{\text {\％}}$	325 ft	275 t	200\％	$100 \mathrm{~m}^{\text {b }}$	－	－
65 mph	1，200＊	475 fl	450 需	400 ft	350 Hf	275 年	200 ft	$100 \mathrm{~m}^{6}$	－
70 mph	1.250 \％	650 fl	525 \％	500 ft	450 H	375 毨	275 f	150 ft	－
75 mph	1，350 \％	650 ft	625 ti	600 ft	550 ft	475 管	375 ft	250 ft	100

PAVED SHOULDER COUNTERMEASURE

The frequency of crashes occurring beyond the limits of the horizontal curves suggests other factors contribute to the safety performance on Richview Road（i．e．，edge of pavement drop offs）．A medium－ term countermeasure reconstructs a paved shoulder from 6.27 to 10.42 （see Figure 2）to mitigate pavement drop offs or to provide a shoulder．

Drop offs at the edge of pavement occur where the aggregate shoulder has been dispersed or rutted due to higher speed vehicles driving on a non－improved surface．The drop off at the edge of pavement has been an on－going maintenance issue due，in part，to the high speeds and lack of paved shoulders．

The following targeted countermeasures are proposed on the Richview Road corridor：
－Upgrade the aggregate shoulder with a 2 ft paved shoulder（full depth）．A paved shoulder width of 2 feet does not require a design exception per BLR Figure 33－3B but does deviate from the IDOT guidance for paved shoulders（BLR Figure 32－2B，ADT＜3，000 vehicles）
－Add a 4 ft graded shoulder where feasible within exiting right of way limits to stabilize the existing pavement and to reduce the frequency of overturn vehicles attributed to foreslopes
－Add longitudinal rumble strips to increase driver attention．
The existing pavement has been resurfaced within the last 3 years．Therefore，the shoulder improvements will have a clean pavement joint near the existing edge line．

Context Sensitive Design（CSD）principles are applicable to the Richview Road corridor due to the cost and environmental impacts associated with design guidance provided by the BLR for reconstruction projects． The development of a context sensitive countermeasure that is systemic is based on guidance from the

National Cooperative Highway Research Program (NCHRP) Report 480: A Guide to Best Practices for Achieving Context Sensitive Solutions (2002) and the AASHTO Highway Safety Design and Operations Guide (1997).

Of the broad categories of transportation issues that are most applicable to the Richview Road study area, improving safety performance is the purpose of the project. Two aspects are to be addressed when evaluating safety countermeasures: nominal and substantive safety. Both nominal and substantive safety are important to include in the decision-making process.

1) Nominal Safety - A countermeasure's adherence to design criteria and/or standards as published in the AASHTO policy, the Manual of Uniform Control Devices (MUTCD) and/or the BLR. The existing typical section on segments of Richview Road where turf shoulders exist does not comply with IDOT design criteria (BLR Figure 33-3B). The preferred design criteria for shoulder widths on reconstruction projects (BLR Figure 32-2B) also are not met when compared to existing conditions.
2) Substantive Safety - The actual performance of the Richview Road corridor is to be compared to similar facilities to assess relative performance. Crash statistics for a corridor having a similar typical section as Richview Road does not appear on the priority ranking for the Greater Egypt Regional Planning and Development Commission (Greater Egypt) safety analysis or the 2017 Safety Tier for segments.

In the case of Richview Road, the substantive safety performance of Richview Road is not attributed to the design criteria outlined in BLR Figure 32-2B. Rather, the substantive safety performance of Richview Road is worse than comparable roadways due to drop-offs from the edge of pavement and/or absence of paved shoulders. Figure 7 shows a decision matrix of nominal and substantive safety countermeasures.

FIGURE 7: APPLYING SAFETY TO PROBLEM DEFINITION AND SOLUTIONS

	Nominal Safety Criteria		
		Meets	Does Not Meet
	$\begin{aligned} & \frac{\mathscr{y}}{\dot{y}} \\ & \stackrel{\infty}{2} \end{aligned}$	- Infrastructure improvements only (no need or justification for geometric revisions) based on safety	- 3R criteria may be considered - Incorporate only low cost safety enhancements - "Upgrade" to full standards may not be cost effective (consider design exceptions to avoid costs and impacts)
	¢ ¢ ¢ ¢ ¢ ¢ O	- Targeted safety improvements (low or high cost depending on extent of problem) - Focus on cost-effective solutions to safety problems	- Complete reconstruction to current criteria probably warranted (no or very minimal design exceptions) - Consider special targeted safety enhancements

The proposed typical section is consistent with the guidance in the IDOT Bureau of Local Roads \& Streets manual (BLR) in order to maximize the length of safety related improvements within the existing ROW width (70 feet). Complete reconstruction is not recommended since the proposed countermeasures results in the typical section to be consistent with Figure 33-3B of the BLR for roadways having an ADT < 3,000 vehicles: Figure 8 shows the proposed typical section for Richview Road.

FIGURE 8: RICHVIEW ROAD TYPICAL SECTION

BENEFIT COST ANALYSIS

The PRIMARY countermeasures while systemic are limited to a total segment length of 4.15 miles on Richview Road. The project data used to perform the benefit cost analysis is based on the following assumptions.

- The crash dataset was scrubbed to only include Road Departure crashes (Fixed Object, Overturning) on Richview Road. The adjusted dataset includes 24 crashes.
- While chevrons and advisory speed plaques are recommended to delineate curves between Mile 6.1 and 7.1, the shoulder widening with longitudinal rumble strips would provide a greater benefit. Therefore, no CMF was applied for the warning sign upgrades which will result in a conservative benefit/cost ratio.
- Upgrading to a 2 ft paved shoulder along the 4.15 mile segment is proposed to improve safety performance of the existing roadway having an effective width of 22 feet $+/-$. The cost estimate includes regrading of shoulders within existing right of way to be more compliant with BLR Figure 32-2B.
- Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to use the travel lane as is done for the existing condition. Richview Road is a not a designated bicycle route. No bicycle crashes were documented as part of the crash analysis.

The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies to not limit themselves to the use of longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as Richview Road.

Not implementing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

The total cost for the overall 4.15 mile segment is estimated to be $\$ 1,061,000$ with a Benefit Cost ratio of 8.20, calculated from the IDOT HSIP BOC analysis tool. A detailed cost estimate and BOC calculations are included as an attachment to this report.

SUPPLEMENTAL BENEFIT COST ANALYSIS

Shoulder improvements would benefit other segments within the study limits. Therefore, the addition of a 2 ft paved shoulder along a 2.1-mile segment would further improve safety performance. The following SUPPLEMENTAL improvements are proposed if additional funds are available to further mitigate the four (4) fixed object and two (2) overturn crashes. These improvements are proposed in addition to the PRIMARY countermeasures listed in the Benefit Cost Analysis section of the safety study.

- Upgrading to a 2 ft paved shoulder along the 2.1 mile segment (MP 4.17-6.27) is proposed to improve safety performance of the existing roadway having an effective width of 22 feet $+/-$. The cost estimate includes regrading of shoulders within existing right of way to be more compliant with BLR Figure 32-2B.
- Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the use travel lane as is done for the existing condition. Richview Road is a not a designated bicycle route. No bicycle crashes were documented as part of the crash analysis.

The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies to not limit themselves to the use of longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as Richview Road.

Not implementing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

This additional 2.1-mile segment for shoulder widening mitigates the segment identified as a Medium Safety Tier between the Fairdrive Lane/ CR 400E intersection (mile 4.21) and the Woodlawn Lane intersection

The total cost for the overall 2.1 mile segment is estimated to be $\$ 574,000$ with a Benefit Cost ratio of 1.40, calculated from the IDOT HSIP BOC analysis tool. A separate cost estimate and benefit cost analysis are included as part of this funding application and is labeled as a SUPPLEMENTAL countermeasure.

Greater Egypt Safety Study

APPENDIX 02: FRA AKIN BLACKTOP ROAD

LOCAL SEGMENTS CRASH SEVERITY DISTRIBUTION BY CRASH TYPE FOR ANALYSIS PERIOD

		CRASH TYPE																	SPECIALCASE		$\stackrel{\text { ¢ }}{ }$
		$\frac{\stackrel{\omega}{\square}}{\frac{0}{c}}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{⿺ ⿻} \end{aligned}$	$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	$$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\mathrm{O}}{0} \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \end{aligned}$					$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{y}{w} \\ & \stackrel{y}{\dddot{x}} \end{aligned}$				$\begin{gathered} \text { 을 } \\ \substack{5 \\ \vdots} \end{gathered}$	-		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	
Crash Severity	ALL	AG	AN	FO	Hо	LT	OtherNC	Othero	OVT	PD	PDC	PKV	RE	RT	SSD	SOD	T	TR	NGT	WP	TOT
Fatal Crashes				1															0	0	1
A-Injury Crashes		1															1		0	0	2
B-Injury Crashes				1					1										0	0	2
C-Injury Crashes																			0	0	0
PDO Crashes				7													1		0	0	

* CMF = Crash Modification Factor
** EUAC = Estimated Uniform Annual Cos

Project: Akin Blacktop Rd
Description: Pre-Design Estimate

Estimate By:	BMB (CMT)	$5 / 3 / 2021$
Checked By:	SPH (CMT)	$5 / 3 / 2021$

Project \#:
Municipality: Road Dist: Nine County: Franklin
Section:

CASE_ID	Year	INJ	fat	COLL_TYPE	WEATH	lighting	SURFCOND	MILE	DRIVER_1	VEH1 TYPE	VEH1 SPECL	VEH1 _DIR	VEH1 MANUV	VEH1_ EVNT1	veh1 Loc1	VEH1 EVNT2	VEH1_ LOC2	VEH1_ evnts	VEH1 LOC3	DRIVER_2	$\begin{aligned} & \text { VEH2 } \\ & \text { TYPE } \end{aligned}$	VEH2 SPECL	$\underset{\substack{\text { VEH2_ } \\ \text { DIR }}}{ }$	$\begin{gathered} \text { VEH2_EV } \\ \underset{N T 1}{ } \end{gathered}$	VEH2_LOC1	rec_ TYPE	xCOORD	ycoord
201801479635	18	0	0	Fixed Object	Clear	Darkness	Wet	2.66	$\begin{aligned} & \text { Other// } \\ & \text { Unknown } \end{aligned}$	Passenger	Personal	West	Straight Ahead	$\begin{aligned} & \text { Ran off } \\ & \text { Roadway } \end{aligned}$	off Pumt. Right	Other Pole or Post	Off Pvmt Right	$\begin{gathered} \text { Ditch/ } \\ \text { Embkmt } \end{gathered}$	Off Pvmt Right								2686871.248440	483970.5408900
201501294427	15	2	1	Fixed Object	Clear	Dark, lit Road	Dry	2.66	Alcohol Impaired	Pickup	Personal	South	$\begin{aligned} & \text { Straight } \\ & \text { Ahead } \end{aligned}$	$\begin{aligned} & \text { Ran Off } \\ & \text { Roadway } \end{aligned}$	Other	Tree or Shrub	Other	Building/s tructure	Other							Fatal	2688871.544600	483969.9485810
201501337403	15	3	0	Turning	Clear	Daylight	Dry	2.66	$\begin{aligned} & \text { Other/ } \\ & \text { Unknown } \end{aligned}$	Pickup	Personal	Southeast	Turning Left	Mtr Veh In Traffic	Intersection	Overturn	Off Pvmt Right			Normal	Passenger	Personal	West	Mtr Veh In Traffic	Intersection	A-Injury	2686871.6766100	483970.3501500
201501490317	15	0	0	Front to Rear	clear	Daylight	Dry	2.66	Normal	Passenger	Personal	East	Straight Ahead	$\begin{aligned} & \text { Mtr Veh } \\ & \text { In Traffic } \end{aligned}$	$\begin{aligned} & \text { On Pvmt } \\ & \text { (Rdwy) } \end{aligned}$					Normal	Pickup	Personal	East	Mtr Veh In Traffic	On Pvmt (Rdwy)	PD	2686872.401880	483970.3111900
201501283403	15	0	0	Fixed Object	Clear	Darkness	Dry	2.67	Had Been Drinking	Pickup	Personal	West	Avoiding Veh/ Objs	$\begin{aligned} & \text { Ran Off } \\ & \text { Roadway } \end{aligned}$	Other	$\begin{gathered} \text { Ditch/ } \\ \text { Embankment } \end{gathered}$	Other									PD	2686946.452610	483966.3333200
201501196641	15	0	1	Fixed Object	Clear	Darkness	Dry	2.90	Drug Impaired	Pickup	Personal	West	Skidding/ Ctrl Loss	$\begin{aligned} & \text { Ran Off } \\ & \text { Roadway } \end{aligned}$	Off Pvmt Right	$\begin{gathered} \text { Ditch/ } \\ \text { Embankment } \end{gathered}$	Off Pvmt Right	Overturn	Off Pvmt Right							Fatal	2688176.912380	483876.6747050
201501487611	15	0	0	Fixed Object	in	Darkness	Wet	2.91	Had Been Drinking	Passenger	Personal	West	Straight Ahead	Ran Off Roadway	Off Pvmt Right	Culvert	Off Pvmt Right	Fence	Off Pvmt Right							PD	2688193.348170	483876.2318220
201601349668	16	0	0	Fixed Object	$\begin{gathered} \text { Sev Crs } \\ \text { Wind } \end{gathered}$	Daylight	Dry	3.92	$\begin{aligned} & \text { Other/ } \\ & \text { Unknown } \end{aligned}$	Passenger	Personal	West	Skidding/ Ctrl Loss	RRSIG/ Gates	On Pvmt (Rdwy)											PD	2693540.116570	483897.0319580
201501346910	15	2	0	Fixed Object	Clear	Darkness	Dry	4.68	Normal	Passenger	Personal	East	Skidding/ Ctrl Loss	$\begin{aligned} & \text { Ran Off } \\ & \text { Roadway } \end{aligned}$	Off Pumt Left	Culvert	Off Pvmt Left	Overturn	Off Pvmt Left							B-Injury	2697551.963020	483973.4309290
201801451627	18	0	0	Fixed Object	clear	Daylight	Dry	4.78	Other/ Unknown	Passenger	Personal	East	Straight Ahead	$\begin{aligned} & \text { Other } \\ & \text { Fixed Obj } \end{aligned}$	Off Pvmt Left											PD	2698109.988600	483979.4044850
201601499998	16	0	0	Fixed Object	Sleet/H	Darkness	Ice	4.84	Normal	Passenger	Personal	East	Skidding/ Ctrl Loss	Other Fixed Obj	On Pvmt (Rdwy)											PD	2698378.519630	483982.2003350
201601384240	16	1	0	Overturned	Clear	Darkness		4.93	Alcohol Impaired	Pickup	Personal	East	Skidding/ Ctrl Loss	Overturn	off Pumt Right											B-Injury	2698886.057780	483987.6220500
201501429581	15	0	0	Fixed Object	Clear	Dusk	Dry	5.40	$\begin{aligned} & \text { Other/ } \\ & \text { Unknown } \end{aligned}$	Passenger	Personal	East	Unknown	Ran Off Roadway	Off Pvmt Right	Mailbox	Off Pvmt Right	$\begin{aligned} & \text { Ditch/ } \\ & \text { Embkmt } \end{aligned}$	Off Pvmt Right							PD	2701342.398420	484019.7971810
201901471428	19	3	0	Angle	Clear	Darkness	Dry	5.43	Normal	SUV	Personal	North	Straight Ahead	Mtr Veh In Traffic	Intersection					Normal	Passenger	Personal	West	Mtr Veh In Traffic	Intersection	A-Injury	2701541.001070	484023.9371050
201501089084	15	0	0	Turning	Clear	Daylight	Wet	5.43	Normal	Passenger	Personal	$\begin{aligned} & \text { South- } \\ & \text { west } \end{aligned}$	U-Turn	Mtr Veh In Traffic	Intersection					Normal	Pickup	Personal	East	Mtr Veh In Traffic	Intersection	PD	2701541.007190	484023.7353730

Akin-Blacktop Road
Franklin County
May 2021

INTRODUCTION

A 2.9-mile segment of Akin-Blacktop Road/ CR 3 was identified as the highest ranked segment within Franklin County as part of a Greater Egypt Regional Planning and Development Commission (Greater Egypt) safety analysis using the most current crash dataset (2014-2018). The Bessie Road intersection (MP 2.65) within the study area was ranked \#2 within the county.

The priority ranking performed for Franklin County was independent of previous analysis performed by the IDOT Bureau of Safety Programs and Engineering (BSPE). Various segments and intersections within the current study limits also have been identified by IDOT as priority safety locations:

- IDOT 2017 safety analyses (2011-2015) identified a 2.9-mile segment of Akin-Blacktop Road as one of 7 Critical Safety Tier segments (17-9-1-0035) between Bessie Road and Thompsonville Road.
- The Bessie Road intersection was ranked in 2017 as the only Critical Safety Tier intersection (17_9_1_0021) in the county.
- The IDOT Run Off the Road Initiative (RORI) identified the study area on Akin-Blacktop Road between Bessie Road (mile 2.65) and Thompsonville Road (mile 5.43). The suggested countermeasure is to Refresh/ Install Edgeline Pavement Markings and Install Centerline Rumble Strips - see limits (blue line) in Figure 1. Note the existing roadway has painted edge lines and center lines.

FIGURE 1: RORI SEGMENT ON AKIN-BLACKTOP ROAD

Several corridors were identified in the RORI database as being high crash locations. The following locations were not included in the 2020 safety ranking performed by Franklin County (2014-2018 dataset) for the following reasons:

- Crocker Road shows one type A injury crash and one type B injury crash which makes the corridor less attractive for safety funding application (< 2 Type A crashes).
- Peach Orchard Road has a total of three type A injury crashes and four type B injury crashes. These crashes are distributed over a 6-mile corridor resulted in a lower score than Akin Blacktop Road.
- Rend City Road has one type A injury crash which makes it less attractive for a safety funding application.

The priority rankings using 2014-2018 crash data, the correlation to the 2017 Safety Tier lists and the RORI output were factors to submit an application for safety funding on Akin-Blacktop Road.

EXISTING CONDITIONS

Akin-Blacktop Road is a county route (CR 3) providing east/west connectivity between IL 34 and IL 142. The roadway width is 22 feet with a painted centerline and edge lines for the 2.90 -mile length. An aggregate shoulder averages 0-1 feet. The legal speed is 55 MPH . Several No Passing zones exist within the study area:

- Vertical curve east of Bessie Road (MP 2.92)
- Vertical curve east of Boothby Rd (MP 4.15) - highest elevation within the study limits
- Vertical curve east of Boothby Rd (MP 4.32) - highest elevation within the study limits Two factors contribute to the safety performance of the corridor:

1. The roadway profile has grades that encourages higher operating speeds. Figure 2 shows the profile of Akin Blacktop Road between Bessie Road and Thompsonville Road. The elevation difference between the crest vertical curves at MP 4.15/4.32 (highest elevation) and the low point is nearly 100 feet.

Note the directional split of EB and WB crashes at the MP 4.15/ 4.32 point as discussed in the Crash Analysis section.

FIGURE 2: AKIN-BLACKTOP ROAD PROFILE

2. The lack of a shoulder along the edge of pavement and roadside grading. The presence and type of a shoulder is variable within the project limits as shown in Photos 1-5. The shoulder treatments along the Akin-Blacktop Road segment ranges from no shoulder, aggregate shoulder, to a paved shoulder at driveways depending upon the location within the corridor.

PHOTO 1: FIXED OBJECT EAST OF BESSIE RD (MILE 2.82)

PHOTO 2: VERTICAL/ HORIZONTAL CURVE (MILE 3.05) NEAR FATAL CRASH

PHOTO 3: NO AGGREGATE SHOULDER (MILE 3.20)

PHOTO 4: SHOULDER DROP OFF/ REPAIR (MILE 3.72)

PHOTO 5: CULVERT HEADWALL CRASH LOCATION (MILE 4.65)

PHOTO 6: ADVANCE WARNING SIGN 1,000 FT FROM THOMPSONVILLE RD (MILE 5.25)

Land use is a mix between residential, agricultural and undeveloped parcels. Location of photos and other items of interest are shown on Figure 3. The 2019 AADT is 850 vehicles of which 90 are trucks east of the Bessie Road intersection.

SAFETY ANALYSIS

A total of 15 crashes occurred within the study area over a 5-year period (2015-2019). The frequency of crashes by year is summarized on Figure 4. Two fatal crashes occurred over the 5year period.

A fatality occurred on Friday, August 21, 2015 at 11 PM about $1 / 4$ mile east of the Bessie Road intersection. The location is near a vertical and horizontal curve on Akin Blacktop Road. The single vehicle crash involved a teenage driver who struck a utility pole (overturn). Distracted driving attributed to texting and drug impairment were contributing factors.

A second fatality occurred Saturday, October 24, 2015 at 11PM when a teenage driver ran a stop sign on the Bessie Road approach and struck a house. Two other people were injured in the crash. Alcohol and speeding were contributing factors.

The IDOT Emphasis Area analysis (2014-2018) identified Road Departure crashes as the most frequent crash type resulting in Type A injuries (50.4\%) and fatalities (64.3\%) on local roadways

FIGURE 4: CRASH SEVERITY BY YEAR

FIGURE 5: CRASH FREQUENCY BY TYPE
 within IDOT District 9.

- Injury/fatal crashes represent 40.0% of the total crashes on Akin Blacktop Road. All fatal/ injury crashes comprise 2 fatal, 2 Type A injuries, and 2 Type B injuries.
- Road Departure crashes (fixed object, overturning) comprise 73.3% of all crashes within the study area as shown in Figure 5. The Road Departure crashes resulted in 2 Fatal and 2 Type B injuries.

Figure 6 shows the location of crashes at 0.25 -mile intervals by crash type. Figure 7 shows the crash type by direction. Road Departure crashes occurred roadway segments on negative grades (see Figure 2) which suggest higher speeds may contribute to crash frequency:

- Road Departure crashes favored WB Akin Blacktop Road between MP 2.65 and 4.32
- Road Departure crashes favored EB Akin Blacktop Road between MP 4.32 and 5.43

While Road Departure crashes occur directionally on negative grades, they are distributed across most segments of the study area regardless of the magnitude of the profile grade. Note that no crashes occurred within the 4.1 and 4.6 segment.

FIGURE6: LOCATION FREQUENCY BY CRASH TYPE

FIGURE 7: LOCATION FREQUENCY BY SEVERITY

[^3]
COUNTERMEASURES

Countermeasures are identified that improve safety performance by focusing on the crash types having the greatest potential for mitigation．The proposed countermeasures are directly linked to historical crash patterns．While the low and moderate cost countermeasure are systemic in nature，the countermeasures are targeted to segments having a higher frequency of crashes．Two primary countermeasures are proposed as summarized below．

STOP AHEAD WARNING SIGN COUNTERMEASURE

A short－term countermeasure installs or upgrades Stop Ahead warning signs to provide a warning to drivers about the stop condition．Relocate advance warning Stop Ahead signs no more than 325 feet in advance of the curves to be consistent with Table 2C－4 of the Manual of Uniform Traffic Control Devices （MUTCD）．Existing signs are located 1，000 feet in advance of the SB Bessie Rd／Akin Blacktop Road intersection and on the EB Akin Blacktop／Thompsonville Rd intersection．

Table 2C－4．Guidelines for Advance Placement of Warning Signs

Posted or 85th－ Percentile Speed	Advance Placement Distance＇								
	Condtion A： Speodreduction and lane changing in heary traflic：	Condition B：Deceleration to the listed ackisory speed（mph）for the condition							
		$0{ }^{3}$	10^{4}	20^{1}	30^{4}	40^{4}	50^{1}	60^{4}	70^{4}
20 mph	225 t	$100 \mathrm{fr}^{5}$	N／A ${ }^{1}$	－	－	－	－	－	－
25 mph	325 年	$100 \mathrm{~m}^{1}$	N／A ${ }^{1}$	N／As	－	－	－	－	－
30 mph	460 tr	100 ft	N／A ${ }^{5}$	N／A ${ }^{5}$	－	－	－	－	－
35 mph	565者	$100 \mathrm{tr}^{6}$	N／A ${ }^{5}$	N／A ${ }^{5}$	N／${ }^{5}$	－	－	－	－
40 mph	670t	125 tt	100 ＊	$100 \mathrm{~m}^{4}$	N／A ${ }^{6}$	－	－	－	－
45 mph	775 者	175 f	125 真	$100 \mathrm{~m}^{*}$	$100 \mathrm{~m}^{4}$	N／A ${ }^{\text {c }}$	－	－	－
50 mph	835 年	250 ft	200 tit	175 ft	126 ft	100 st	－	－	－
55 mph	980完	325 ft	275 分	225 ft	200 ft	125 tr	N / A^{5}	－	$=$
65 mph	1.100 t	400 fl	\＄50\％	325 ft	275 n	200%	$100 \mathrm{~m}^{8}$	－	－
65 mph	1．200	475 ft	450 者	400 ft	350 ff	275 年	200 ft	$100 \mathrm{~m}^{6}$	－
70 mph	1，260	560 ft	525 㐌	800 ft	$450 \mathrm{f1}$	375 क	275 f	150 ft	－
75 mph	1，350 \％	650 ft	625 竕	600 ft	550 ff	475 年	375 ft	250 ft	100 0

Section 2C． 05 emphasizes that signs are not to be placed too far in advance of the condition．
Dual stop signs are also proposed on the following approaches：
－SB Bessie Road approach due，in part，to the profile of the at－grade railroad crossing located 340 feet north of Akin Blacktop Road．
－NB Thompsonville Road approach due，in part，to the horizontal curve located within 250 feet of Akin Blacktop Road．

PAVED SHOULDER COUNTERMEASURE

The frequency of crashes distributed throughout the study limits suggests a systemic type of solution is needed to improve the safety performance on Akin-Blacktop Road (i.e., edge of pavement drop offs and lack of aggregate/ paved shoulders). A medium-term countermeasure reconstructs a paved shoulder from 2.60 to 5.50 (see Figure 3) to address pavement drop offs in conjunction with longitudinal rumble strips and regrading of the foreslopes within right-of-way.

The following targeted countermeasures are proposed on the Akin-Blacktop Road corridor:

- Replace the aggregate shoulder with a 2 ft paved shoulder (full depth). A paved shoulder width of 2 feet does not require a design exception per BLR Figure 33-3B but does deviate from the IDOT guidance for paved shoulders (ADT < 1,000 vehicles)
- Add a 4 ft graded shoulder where feasible within exiting right of way limits to stabilize the existing pavement and to reduce the frequency of overturn vehicles attributed to steep front slopes.
- Add longitudinal rumble strips to increase driver attention.
- Advance Stop Ahead warning signs and dual Stop Signs on critical approaches.
- Guardrail at headwalls of culverts (2 locations)

Context Sensitive Design (CSD) principles are applicable to the Akin-Blacktop Road corridor due to the impacts associated with design guidance provided by the BLR for reconstruction projects. The development of a context sensitive countermeasure that is systemic is based guidance from the National Cooperative Highway Research Program (NCHRP) Report 480: A Guide to Best Practices for Achieving Context Sensitive Solutions (2002) and the AASHTO Highway Safety Design and Operations Guide (1997).

Of the broad categories of transportation issues that are most applicable to the Akin-Blacktop Road study area, improving safety performance is the purpose of the project. Two aspects are to be addressed when evaluating safety countermeasures: nominal and substantive safety. Both nominal and substantive safety are important to include in the decision-making process.

1) Nominal Safety - A countermeasure's adherence to design criteria and/or standards as published in the AASHTO policy, the Manual of Uniform Control Devices (MUTCD) and/or the BLR. The existing typical section complies with IDOT design criteria for shoulder widths (BLR Figure 33-3B). The preferred design criteria for reconstruction projects (BLR Figure 32-2B) are not met.
2) Substantive Safety - The actual performance of the Akin-Blacktop Road corridor is to be compared to similar facilities to assess relative performance. Crash statistics for a corridor having a similar typical section as Akin-Blacktop Road does not appear on the priority ranking for the Greater Egypt Regional Planning and Development Commission (Greater Egypt) safety analysis or the 2017 Safety Tier for segments.

In the case of Akin-Blacktop Road, the substantive safety performance of Akin-Blacktop Road is not attributed to the design criteria outlined in BLR Figure 32-2B. Rather, the substantive safety performance of Akin-Blacktop Road is worse than comparable roadways due to the absence of paved shoulders and graded foreslopes.

Figure 8 shows a decision matrix of nominal and substantive safety countermeasures.

	Nominal Safety Criteria	
	Meets	Does Not Meet

The proposed typical section is consistent with the guidance in the IDOT Bureau of Local Roads \& Streets manual (BLR) in order to maximize the length of safety related improvements within the existing ROW width (70 feet). Complete reconstruction is not recommended since the existing typical section is consistent with Figure 33-3B of the BLR for roadways having an ADT < 1,000 vehicles: Figure 9 shows the proposed typical section for Akin-Blacktop Road.

FIGURE 9: AKIN-BLACKTOP ROAD TYPICAL SECTION

BENEFIT COST ANALYSIS

The countermeasures while systemic and include a total segment length of 2.90 miles on Akin-Blacktop Road. The project data used to perform the benefit cost analysis is based on the following assumptions.

1. The crash dataset was scrubbed to only include Road Departure crashes (Fixed Object, Overturning) and Angle crashes at intersections - Animal, Front to Rear, and a side street Fixed Object crash (MP 2.66) were removed from the BC dataset. The adjusted Benefit Cost dataset includes 13 crashes.
2. Upgrading to a 2 ft paved shoulder along the 2.90 mile segment is proposed to improve safety performance of the existing roadway having an effective width of 22 feet $+/-$. The cost estimate include regrading of shoulders within existing right of way to be more compliant with BLR Figure 32-2B.
3. The cost estimate includes costs for regrading of the foreslopes and guardrail protection of headwalls. Object markers should be installed as a minimum at the headwall locations.
4. Longitudinal rumble strips on the edge line are proposed having 10 ft gaps. Bicycle traffic, if present, is expected to the travel lane as done for the existing condition. Akin-Blacktop Road is a not a designated bicycle route. No bicycle crashes were documented as part of the crash analysis.

The cost and environmental impact of widening the roadway cross-section to meet an FHWA best practice of a 4 ft paved shoulder (plus minimum travel lane with of 22 feet) is prohibitive. FHWA directs agencies not limit themselves to use longitudinal rumble stripes on roadways where these standard applications provide sufficient space, as flexibility from a standard rumble strip design may provide the opportunity to improve overall safety on a wider variety of roads such as AkinBlacktop Road. Note that no bicycle crashes were reported during the 5 -year study period and Akin-Blacktop Road is not a designated bicycle route.

Non-performing this design element would adversely impact the benefit cost analysis calculations supporting the value of this low cost countermeasure. Refinements to the proposed design can occur if the project receives safety funding.

The total cost for the overall 2.9 mile segment is estimated to be $\$ 1,126,317$ with a Benefit Cost ratio of 5.10 as calculated from the IDOT HSIP BOC analysis tool. The Benefit Cost calculation is conservative for at least two reasons:

- The Fixed Object crash at Mile 2.66 occurred on the SB Bessie Road approach. Although sign upgrades are proposed on Bessie Road to be more compliant with MUTCD guidance for advance waring signs, the primary costs are attributed to the paved shoulder improvements on Akin Blacktop Road. Crashes were focused on Akin Blacktop Road. Including this crash in the BC calculations would have resulted in a BC of 10.
- Sign upgrades are proposed on critical approaches within the study area: Bessie Road, Akin Blacktop Road and Thompsonville Road. CMFs for the stop sign upgrades were not included in the BC calculations.

A detailed cost estimate and BOC calculations are included as an attachment to this report.

Greater Egypt Safety Study

APPENDIX 03: FRA EATON ROAD

STATE OF ILLINOIS

ILLINOIS COMMERCE COMMISSION TRANSPORTATION BUREAU / RAIL SAFETY SECTION

Mr. Larry Miller, Chairman
Franklin County Board
901 Public Square
Benton, IL 62812
Dear Mr. Miller:
This is in response to the Grade Crossing Protection Fund (GCPF) Grade Crossing Project applications that Franklin County recently submitted for our review and consideration. The applications propose projects to install automatic flashing light signals and gates at the Eaton Road (AAR/DOT \#295225U, railroad milepost 101.90-GE), located near Thompsonville, and Valier Lake Road (AAR/DOT \#069258L, railroad milepost 157.01-Y) highway-rail grade crossings of the BNSF Railway's (BNSF) track, located near Valier.

Commission Staff (Staff) will recommend that the projects be included in the Commission's FY 2022-2026 Crossing Safety Improvement Program 5-Year Plan (Plan). The Commission's review of the Plan will take place in late March with final selection of projects and publication in April 2021.

Based on available funding, Staff will recommend to the Commission that the GCPF be used to pay 95% of the eligible costs, with the BNSF responsible for the remaining installation costs. The railroad is also responsible for all future maintenance costs associated with the new automatic warning devices.

I trust this information will be helpful. If you have any questions, or need additional information, please contact me at (312) 636-7760 or Brian.Vercruysse@illinois.gov.

Very truly yours,

Brian Vercruysse
Rail Safety Program Administrator
cc: Michael Rolla, Franklin County Engineer

ILLINOIS COMMERCE COMMISSION CROSSING SAFETY IMPROVEMENT PROGRAM

2021 GRADE CROSSING PROTECTION FUND PROJECT APPLICATION

EATON ROAD GRADE CROSSING

USDOT: 295225U / M.P. 101.90 (BNSF Railway)

FRANKLIN COUNTY, IL
\qquad

I. General Information

II. Project Administrator

Contact Person: Mike Rolla
Title: County Engineer
Company:
Address:
Franklin County, IL
City: Benton
Business Phone:
618.439.0331

State:IL
Zip: 62812
Email Address (if applicable):
coengfranklincohwy@frontier.com

III. General Project Information

$\begin{array}{llll}\text { Number of School Buses over Crossing per Day: } & 0 & \\ \text { Do vehicles carrying hazardous materials use crossing: } & \square \text { Yes } & \square \text { No }\end{array}$
If yes, list the type and approximate number of hazardous material vehicles per day:
Number of tracks through crossing:
1
Distance to, and street name of, the two nearest existing grade separations from location being applied for: None (East) / 0.70 Miles IL 34 (West)
Crossing is currently: \square Grade Separation \square Highway-Rail Grade Crossing \square No Crossing Existing warning devices at crossing:None \square Center Median or Median Barriers
Automatic Flashing Light Signals and GatesAutomatic Flashing Light Signals STOP Signs Only
\checkmark Crossbucks OnlyOther (please specify)
Are railroad signals interconnected with traffic signals at this location:

\qquad No N/A If crossing is currently a grade separation, provide the following information:
\square Highway Over Railroad \square Highway Under Railroad
Number of Traffic Lanes \qquad Width of Pavement
Vertical Clearance

IV. Project Location Map and/or Photographs

A project location map shall be included with the application. The project location map should show the crossing(s) for which application is being made, as well as any other improvements that are being submitted in conjunction with this application. If project is a part of a "corridor" project, indicate the limits of the entire "corridor" on the map. Paper size shall not exceed 11 x 17 inches. Please provide a minimum of 4 digital photos of the existing crossing (photos should show the existing warning devices, the existing crossing surface, and the existing highway approaches).

V. Project Summary.

Application to (check all that apply):

\square Upgrade Circuitry	\square Interconnect Railroad and Traffic Signals at Nearby Intersection
\square Close Adjacent Crossing	\square Construct a Connecting Road Between Crossings
\square Upgrade Warning Devices $\quad \square$ Construct Barrier Medians at Crossing	
\square Other (please specify)	
Is application for: $\quad \square$ Design Only $\quad \square$ Construction only $\quad \square$ Design and Construction	
Is application part of a larger "corridor" project: $\quad \square$ Yes $\quad \square$ No	

Use the space below to provide a narrative of the proposed project. Items to include in this section are extenuating circumstances unique to this crossing, such as heavier seasonal traffic, visibility restrictions caused by trees, buildings, etc., proximity of schools and public buildings, etc., which explain why this crossing should be funded. Explain any work to by done by the local agency, such as roadway improvements in the immediate vicinity of the grade separation project. Approximate costs must be listed for each item of work to be done.

The proposed Eaton Road Grade Crossing Project will improve safety by upgrading the warning devices from passive Crossbucks Only to Automatic Flashing Light Signals \& Gates (See Appendix A for Proposed Layout Exhibit and Appendix C for Associated Cost Estimates).

VI. Evidence of Community Effort and Support

Any preliminary engineering or planning studies, along with cost estimates, that have been prepared for this project should be included with your application. List any past efforts to improve safety at railroad crossings within applicant's jurisdiction. Any studies that have been conducted, regarding railroad crossing elimination or consolidation, must also be included.

A Crossing Safety Analysis and Study was commenced in 2020 by the Greater Egypt Regional Planning and Development Commission, in partnership with Franklin County. The study was performed by a consultant, and identified rail crossing locations that have a history of vehicle-train crashes, or have a high exposure index.

The study ranked this crossing in the Top 16 Crossing Safety Priority. While the crossing does not have a history of crashes, the study identified the Eaton Road crossing with a reduced safety rating due presence of only passive Crossbuck Warning Devices. The crossing has an existing annualized crash prediction of 0.08 (See Appendix A for Crossing Priority List).

VII. Financial Need

This narrative must justify the local government's need for assistance from the GCPF. One copy of the applicant's most recent financial audit must be included with your application (local government agencies only).

The County has limited funds available, with hundreds of miles roadway jurisdiction to maintain for basic operations. While this crossing is of high safety concern, the county has limited funds available to share costs in upgrading Railroad crossing warning devices. Securing GCPF funds would allow for the project timeline to move up and improve safety for all users.

The County's recent financial audit is available upon request.

VIII. Project Schedule

Provide information on when this project is anticipated to commence, or when improvements must be implemented. Provide an approximate timeline listing key milestones concerning the design and/or construction phases of the project.

A preliminary Project Schedule has been developed with key Project Milestones identified below. The Project Schedule can be accelerated or delayed, depending on the ICC's required funding schedule.

- GCPF Award Notice: 4/2021
- CN RR Coordination: Ongoing (4/2021 - Project Close)
- Project Construction Begins: 9/2021*
- Project Completion: 11/2021*
*Project Schedule assumes the responsibility of project implementation will be borne by the CN Railway for all Crossing Pad rehabilitation and Automatic Flashing Light Signals \& Gates installation.

Forms may be submitted by electronic mail or regular mail. Mailing addresses are noted below:
Email: Submit by Email to ICC.Railsafety@illinois.gov
Regular Mail: Rail Safety Program Administrator Illinois Commerce Commission
527 E. Capitol Avenue
Springfield, Illinois 62701
[NOTE: ALL APPLICATIONS MUST INCLUDE DIGITAL PHOTOS OF THE GRADE CROSSING, HIGHWAYRAIL BRIDGE, or PEDESTRIAN-RAIL BRIDGE THAT IS THE SUBJECT OF THE APPLICATION. ANY APPLICATIONS SUBMITTED WITHOUT THE PHOTOS WILL NOT BE CONSIDERED UNTIL THE PHOTOS HAVE BEEN RECEIVED BY THE ICC RAIL SAFETY SECTION.]

APPENDIX A PROJECT LOCATION MAP \& EXHIBITS

Franklin County Rail Crossing Priority List
January 13, 2021

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX	Comments
1	St. Joseph Rd. (Benton)	431091X	UP	300.65	Flashing Lights	250	1	0.5487	0.0697	0.1658	3,539,337	
1	Linn Rd. (Benton)	431095A	UP	299.92	Flashing Lights	250	1	0.5487	0.0697	0.1658	3,539,337	
3	Dry Road (Ziegler)	431086B	UP	307.35	Flashing Lights	100	1	0.4813	0.0678	0.1449	332,325	
4	Creek Nation Blacktop (Zeigler)	431085 U	UP	307.57	Flashing Lights	75	1	0.4602	0.0648	0.1349	157,711	
5	Akin Blacktop (Logan)	295232E	CN	96.74	Flashing Lights	950	0	0.3729	0.3729	0.3729	1,240,307	
6	Vine Road (Sesser)	069252V	BNSF	155.23	Flashing Lights	75	2	0.2805	0.0272	0.0864	397	
7	River Road (Royalton)	431077C	Mid America	311.46	Flashing Lights	275	0	0.2543	0.2543	0.2543	11,720	
8	Lake Benton Rd (Whittington)	1676135	UP	293.55	Gates	200	1	0.2346	0.0327	0.0654	830,087	
9	Izaac Walton Rd (Valier)	069260M	BNSF	159.58	Crossbucks	650	0	0.2309	0.2309	0.2309	133,964	
10	Urbain Rd (Christopher)	293700P	CN	82.96	Gates	400	2	0.1922	0.0158	0.0602	64,749	
11	$\begin{gathered} \text { Bessie Road } \\ \text { (Logan) } \\ \hline \end{gathered}$	295233L	CN	96.9	Flashing Lights	150	0	0.1841	0.1841	0.1841	372	
12	West End Road (Thompsonville)	295215N	CN	71.32	Flashing Lights	25	0	0.1689	0.1689	0.1689	100	
13	Fairview Road (Christopher)	293693G	CN	80.7	Gates	125	1	0.1422	0.0117	0.0430	4,796	
14	Valier Lake Rd (Valier)	069258L	BNSF	157.01	Crossbucks	25	0	0.1030	0.1030	0.1030	29	
15	$\begin{gathered} \hline \text { Baseline Road } \\ \text { (Logan) } \\ \hline \end{gathered}$	295231X	CN	96.64	Crossbucks	100	0	0.1014	0.1014	0.1014	163	
16	Eaton Road (Thompsonville)	295225 U	CN	101.9	Crossbucks	25	0	0.0776	0.0776	0.0776	5	

[^4]
APPENDIX B CROSSING PHOTOS

APPENDIX C PROJECT COST ESTIMATE

EATON ROAD AT-GRADE HWY-RAIL CROSSING IMPROVEMENTS				
GRADE CROSSING PROTECTION FUND APPLICATION				
FRANKLIN COUNTY, ILLINOIS				
CONCEPT-LEVEL COST ESTIMATE				
Item	Unit	Cost Per Unit	Quantity	Total Cost
Removals	LS	\$1,000.00	1	\$1,000.00
RR Warning Lights \& Gates	EA	\$275,000.00	1	\$275,000.00
Signing	LS	\$2,000.00	1	\$2,000.00
Roadway Traffic Control	LS	\$2,000.00	1	\$2,000.00
RR Flagging	LS	\$3,000.00	1	\$3,000.00
RR Insurance	LS	\$10,000.00	1	\$10,000.00
SUB-TOTAL				\$293,000
CONTINGENCY (15\%)				\$43,950
DESIGN ENGINEERING				\$11,720
CONSTRUCTION ENGINEERING				\$14,650
TOTAL COST				\$363,320

Greater Egypt Safety Study

APPENDIX 03: FRA VALIER LAKE ROAD

STATE OF ILLINOIS

ILLINOIS COMMERCE COMMISSION TRANSPORTATION BUREAU / RAIL SAFETY SECTION

Mr. Larry Miller, Chairman
Franklin County Board
901 Public Square
Benton, IL 62812
Dear Mr. Miller:
This is in response to the Grade Crossing Protection Fund (GCPF) Grade Crossing Project applications that Franklin County recently submitted for our review and consideration. The applications propose projects to install automatic flashing light signals and gates at the Eaton Road (AAR/DOT \#295225U, railroad milepost 101.90-GE), located near Thompsonville, and Valier Lake Road (AAR/DOT \#069258L, railroad milepost 157.01-Y) highway-rail grade crossings of the BNSF Railway's (BNSF) track, located near Valier.

Commission Staff (Staff) will recommend that the projects be included in the Commission's FY 2022-2026 Crossing Safety Improvement Program 5-Year Plan (Plan). The Commission's review of the Plan will take place in late March with final selection of projects and publication in April 2021.

Based on available funding, Staff will recommend to the Commission that the GCPF be used to pay 95% of the eligible costs, with the BNSF responsible for the remaining installation costs. The railroad is also responsible for all future maintenance costs associated with the new automatic warning devices.

I trust this information will be helpful. If you have any questions, or need additional information, please contact me at (312) 636-7760 or Brian.Vercruysse@illinois.gov.

Very truly yours,

Brian Vercruysse
Rail Safety Program Administrator
cc: Michael Rolla, Franklin County Engineer

ILLINOIS COMMERCE COMMISSION CROSSING SAFETY IMPROVEMENT PROGRAM 2021 GRADE CROSSING PROTECTION FUND PROJECT APPLICATION

VALIER LAKE ROAD GRADE CROSSING

USDOT: 069258L / M.P. 157.01 (BNSF Railway)

FRANKLIN COUNTY, IL
\qquad

I. General Information

Applicant Type: Resubmission:	\square City \square Village \square Town $\quad \square$ \square Yes \square No RR Compan	County \square Township any: BNSF Raiway	Railroad
Date:	Applicant: County of Franklin	Population: 38,923	
Chief Elected Official:	Larry Miller	Title: County Board Chariman	
Business Address:	901 Public Square		
City: Benton	State:IL	Zip: 62812	
Business Phone:	(618) 435-9800 Business Fax:	(618) 439-3741	
Email Address (if applicable): State Legislative District:): gaylaskink@franklincountyil.org		
	House District 117 / Senate District 59		

II. Project Administrator

Contact Person:	Mike Rolla		Title: County Engineer
Company:	Franklin County, IL		
Address:	13034 Odd Fellows Lane		
City: Benton	State: IL		Zip: 62812
Business Phone:	618.439.0331	Business Fax:	(618) 439-6411

Email Address (if applicable): coengfranklincohwy@frontier.com

III. General Project Information

$\begin{array}{llll}\text { Number of School Buses over Crossing per Day: } & 0 & \\ \text { Do vehicles carrying hazardous materials use crossing: } & \square \text { Yes } & \square \text { No }\end{array}$
If yes, list the type and approximate number of hazardous material vehicles per day:
Number of tracks through crossing: 1
Distance to, and street name of, the two nearest existing grade separations from location being applied for: 10+ Miles (East) / 1.6 Miles Overhead Bridge Rd (South)
Crossing is currently: \square Grade Separation \square Highway-Rail Grade Crossing \square No Crossing Existing warning devices at crossing:

NoneCenter Median or Median Barriers
Automatic Flashing Light Signals and GatesAutomatic Flashing Light Signals STOP Signs Only
\checkmark Crossbucks OnlyOther (please specify)
Are railroad signals interconnected with traffic signals at this location:

\qquad No N/A If crossing is currently a grade separation, provide the following information:
\square Highway Over Railroad \square Highway Under Railroad
Number of Traffic Lanes \qquad Width of Pavement
Vertical Clearance

IV. Project Location Map and/or Photographs

A project location map shall be included with the application. The project location map should show the crossing(s) for which application is being made, as well as any other improvements that are being submitted in conjunction with this application. If project is a part of a "corridor" project, indicate the limits of the entire "corridor" on the map. Paper size shall not exceed 11 x 17 inches. Please provide a minimum of 4 digital photos of the existing crossing (photos should show the existing warning devices, the existing crossing surface, and the existing highway approaches).

V. Project Summary.

Application to (check all that apply):

\square Upgrade Circuitry	\square Interconnect Railroad and Traffic Signals at Nearby Intersection
\square Close Adjacent Crossing	\square Construct a Connecting Road Between Crossings
\square Upgrade Warning Devices $\quad \square$ Construct Barrier Medians at Crossing	
\square Other (please specify)	
Is application for: $\quad \square$ Design Only $\quad \square$ Construction only $\quad \square$ Design and Construction	
Is application part of a larger "corridor" project: $\quad \square$ Yes $\quad \square$ No	

Use the space below to provide a narrative of the proposed project. Items to include in this section are extenuating circumstances unique to this crossing, such as heavier seasonal traffic, visibility restrictions caused by trees, buildings, etc., proximity of schools and public buildings, etc., which explain why this crossing should be funded. Explain any work to by done by the local agency, such as roadway improvements in the immediate vicinity of the grade separation project. Approximate costs must be listed for each item of work to be done.

The proposed Valier Lake Road Grade Crossing Project will improve safety by upgrading the warning devices from passive Crossbucks Only to Automatic Flashing Light Signals \& Gates (See Appendix A for Proposed Layout Exhibit and Appendix C for Associated Cost Estimates).

VI. Evidence of Community Effort and Support

Any preliminary engineering or planning studies, along with cost estimates, that have been prepared for this project should be included with your application. List any past efforts to improve safety at railroad crossings within applicant's jurisdiction. Any studies that have been conducted, regarding railroad crossing elimination or consolidation, must also be included.

A Crossing Safety Analysis and Study was commenced in 2020 by the Greater Egypt Regional Planning and Development Commission, in partnership with Franklin County. The study was performed by a consultant, and identified rail crossing locations that have a history of vehicle-train crashes, or have a high exposure index.

The study ranked this crossing in the Top 14 Crossing Safety Priority within the county. While the crossing does not have a history of crashes, the study identified the Eaton Road crossing with a reduced safety rating due presence of only passive Crossbuck Warning Devices. The crossing has an existing annualized crash prediction of 0.10 (See Appendix A for Crossing Priority List).

VII. Financial Need

This narrative must justify the local government's need for assistance from the GCPF. One copy of the applicant's most recent financial audit must be included with your application (local government agencies only).

The County has limited funds available, with hundreds of miles roadway jurisdiction to maintain for basic operations. While this crossing is of high safety concern, the county has limited funds available to share costs in upgrading Railroad crossing warning devices. Securing GCPF funds would allow for the project timeline to move up and improve safety for all users.

The County's recent financial audit is available upon request.

VIII. Project Schedule

Provide information on when this project is anticipated to commence, or when improvements must be implemented. Provide an approximate timeline listing key milestones concerning the design and/or construction phases of the project.

A preliminary Project Schedule has been developed with key Project Milestones identified below. The Project Schedule can be accelerated or delayed, depending on the ICC's required funding schedule.

- GCPF Award Notice: 4/2021
- CN RR Coordination: Ongoing (4/2021 - Project Close)
- Project Construction Begins: 9/2021*
- Project Completion: 11/2021*
*Project Schedule assumes the responsibility of project implementation will be borne by the CN Railway for all Crossing Pad rehabilitation and Automatic Flashing Light Signals \& Gates installation.

Forms may be submitted by electronic mail or regular mail. Mailing addresses are noted below:
Email: Submit by Email to ICC.Railsafety@illinois.gov
Regular Mail: Rail Safety Program Administrator Illinois Commerce Commission
527 E. Capitol Avenue
Springfield, Illinois 62701
[NOTE: ALL APPLICATIONS MUST INCLUDE DIGITAL PHOTOS OF THE GRADE CROSSING, HIGHWAYRAIL BRIDGE, or PEDESTRIAN-RAIL BRIDGE THAT IS THE SUBJECT OF THE APPLICATION. ANY APPLICATIONS SUBMITTED WITHOUT THE PHOTOS WILL NOT BE CONSIDERED UNTIL THE PHOTOS HAVE BEEN RECEIVED BY THE ICC RAIL SAFETY SECTION.]

APPENDIX A PROJECT LOCATION MAP \& EXHIBITS

Franklin County Rail Crossing Priority List
January 13, 2021

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX	Comments
1	St. Joseph Rd. (Benton)	431091X	UP	300.65	Flashing Lights	250	1	0.5487	0.0697	0.1658	3,539,337	
1	Linn Rd. (Benton)	431095A	UP	299.92	Flashing Lights	250	1	0.5487	0.0697	0.1658	3,539,337	
3	Dry Road (Ziegler)	431086B	UP	307.35	Flashing Lights	100	1	0.4813	0.0678	0.1449	332,325	
4	Creek Nation Blacktop (Zeigler)	431085 U	UP	307.57	Flashing Lights	75	1	0.4602	0.0648	0.1349	157,711	
5	Akin Blacktop (Logan)	295232E	CN	96.74	Flashing Lights	950	0	0.3729	0.3729	0.3729	1,240,307	
6	Vine Road (Sesser)	069252V	BNSF	155.23	Flashing Lights	75	2	0.2805	0.0272	0.0864	397	
7	River Road (Royalton)	431077C	Mid America	311.46	Flashing Lights	275	0	0.2543	0.2543	0.2543	11,720	
8	Lake Benton Rd (Whittington)	1676135	UP	293.55	Gates	200	1	0.2346	0.0327	0.0654	830,087	
9	Izaac Walton Rd (Valier)	069260M	BNSF	159.58	Crossbucks	650	0	0.2309	0.2309	0.2309	133,964	
10	Urbain Rd (Christopher)	293700P	CN	82.96	Gates	400	2	0.1922	0.0158	0.0602	64,749	
11	$\begin{gathered} \text { Bessie Road } \\ \text { (Logan) } \\ \hline \end{gathered}$	295233L	CN	96.9	Flashing Lights	150	0	0.1841	0.1841	0.1841	372	
12	West End Road (Thompsonville)	295215N	CN	71.32	Flashing Lights	25	0	0.1689	0.1689	0.1689	100	
13	Fairview Road (Christopher)	293693G	CN	80.7	Gates	125	1	0.1422	0.0117	0.0430	4,796	
14	Valier Lake Rd (Valier)	069258L	BNSF	157.01	Crossbucks	25	0	0.1030	0.1030	0.1030	29	
15	$\begin{gathered} \hline \text { Baseline Road } \\ \text { (Logan) } \\ \hline \end{gathered}$	295231X	CN	96.64	Crossbucks	100	0	0.1014	0.1014	0.1014	163	
16	Eaton Road (Thompsonville)	295225 U	CN	101.9	Crossbucks	25	0	0.0776	0.0776	0.0776	5	

[^5]
APPENDIX B CROSSING PHOTOS

APPENDIX C PROJECT COST ESTIMATE

VALIER LAKE ROAD AT-GRADE HWY-RAIL CROSSING IMPROVEMENTS				
GRADE CROSSING PROTECTION FUND APPLICATION				
FRANKLIN COUNTY, ILLINOIS				
CONCEPT-LEVEL COST ESTIMATE				
Item	Unit	Cost Per Unit	Quantity	Total Cost
Removals	LS	\$1,000.00	1	\$1,000.00
RR Warning Lights \& Gates	EA	\$275,000.00	1	\$275,000.00
Signing	LS	\$2,000.00	1	\$2,000.00
Roadway Traffic Control	LS	\$2,000.00	1	\$2,000.00
RR Flagging	LS	\$3,000.00	1	\$3,000.00
RR Insurance	LS	\$10,000.00	1	\$10,000.00
SUB-TOTAL				\$293,000
CONTINGENCY (15\%)				\$43,950
DESIGN ENGINEERING				\$11,720
CONSTRUCTION ENGINEERING				\$14,650
TOTAL COST				\$363,320

Greater Egypt Safety Study

APPENDIX 03: JAC CRANE ROAD

ILLINOIS COMMERCE COMMISSION CROSSING SAFETY IMPROVEMENT PROGRAM

2021 GRADE CROSSING PROTECTION FUND PROJECT APPLICATION

CRANE ROAD GRADE CROSSING

USDOT: 431060Y / M.P. 321.02 (UNION PACIFIC)

JANUARY 15, 2021
\qquad
Staff: CROSSING SAFETY IMPROVEMENT PROGRAM GRADE CROSSING PROTECTION FUND PROJECT INFORMATION Public Highway - Rail Grade Crossings

I. General Information

II. Project Administrator

Contact Person: \quad Mitch Burdick, P.E.	Title: County Engineer
Company:	

Address: Jackson County Highway Department, 1200 Enterprise Avenue
City: Murphysboro State:IL
Business Phone:
Email Address (if applicable): Mitch.Burdick@jacksoncounty-il.

III. General Project Information

County: Jackson	\square In City $\quad \square$ Near City City:	De Soto
Street / Roadway Name:	Crane Road	
Railroad: Union Pacific	Crossing Number: 431060Y	Railroad Milepost 321.02

Average Daily Traffic (ADT): $\quad \frac{200}{\text { (Number of Cars per Day over the Crossing) }}$ Daily Train Traffic: $\frac{40}{\text { (Number of Trains per Day) }}$

| Number of School Buses over Crossing per Day: | 0 | |
| :--- | :--- | :--- | :--- |
| Do vehicles carrying hazardous materials use crossing: | \square Yes | \square No |

If yes, list the type and approximate number of hazardous material vehicles per day:
Number of tracks through crossing: 1
Distance to, and street name of, the two nearest existing grade separations from location being applied for:
0.70 Miles N Hickory St. (West) / 4.4 Miles Maes Rd. (East)

Crossing is currently: \square Grade Separation \square Highway-Rail Grade Crossing \square No Crossing Existing warning devices at crossing:

None
\square Center Median or Median BarriersAutomatic Flashing Light Signals and Gates
Automatic Flashing Light Signals STOP Signs Only
\square Crossbucks Only
\square Other (please specify)
Are railroad signals interconnected with traffic signals at this location:
\square Yes \square No N/A If crossing is currently a grade separation, provide the following information:
\square Highway Over RailroadHighway Under Railroad
Number of Traffic Lanes \qquad Width of Pavement
Vertical Clearance

IV. Project Location Map and/or Photographs

A project location map shall be included with the application. The project location map should show the crossing(s) for which application is being made, as well as any other improvements that are being submitted in conjunction with this application. If project is a part of a "corridor" project, indicate the limits of the entire "corridor" on the map. Paper size shall not exceed 11 x 17 inches. Please provide a minimum of 4 digital photos of the existing crossing (photos should show the existing warning devices, the existing crossing surface, and the existing highway approaches).

V. Project Summary.

Application to (check all that apply):
\square Upgrade Circuitry $\quad \square$ Interconnect Railroad and Traffic Signals at Nearby Intersection
\square Close Adjacent Crossing \square Construct a Connecting Road Between Crossings
\square Upgrade Warning Devices \square Construct Barrier Medians at Crossing
\square Other (please specify) Realign Crane Road with IL 149, Add Right Turn Lane \& Relocate Rail Crossing
Is application for: $\quad \square$ Design Only $\quad \square$ Construction only \square Design and Construction
Is application part of a larger "corridor" project: \square Yes \square No
Use the space below to provide a narrative of the proposed project. Items to include in this section are extenuating circumstances unique to this crossing, such as heavier seasonal traffic, visibility restrictions caused by trees, buildings, etc., proximity of schools and public buildings, etc., which explain why this crossing should be funded. Explain any work to by done by the local agency, such as roadway improvements in the immediate vicinity of the grade separation project. Approximate costs must be listed for each item of work to be done.

The proposed Crane Road Crossing Project will realign Crane road to IL 149, add a right turn lane on IL 149, and relocate the Highway-Rail Crossing with Automatic Flashing Light Signals \& Gates (See Appendix A for Proposed Layout Exhibit \& Appendix C for Associated Cost Estimates).

The existing skew between Crane Road and the tracks and the intersecting IL 149 results in an increased safety concern and exposure rating. Additionally, the limited distance (90 FT) between IL 149 and the nearest crossing arm creates significant safety hazards when vehicles queue onto IL 149 during times of rail traffic. There is significant traffic that utilizes the crossing on Sunday and Wednesday during services at the adjacent Christ the King Lutheran Church.

VI. Evidence of Community Effort and Support

Any preliminary engineering or planning studies, along with cost estimates, that have been prepared for this project should be included with your application. List any past efforts to improve safety at railroad crossings within applicant's jurisdiction. Any studies that have been conducted, regarding railroad crossing elimination or consolidation, must also be included.

A Crossing Safety Analysis and Study was commenced by the Greater Egypt Regional Planning and Development Commission, in partnership with Jackson County. The study was performed by a consultant, and identified rail crossing locations that have a history of vehicle-train crashes, or have a high exposure index.

In addition 1 previous crash at this location, this crossing was elevated on the final list due to a history of community feedback on the short distance between IL 149 and the tracks, resulting in vehicle queues onto IL 149 when rail traffic is present. The Crane Road crossing was identified as Priority \#3, yet has the highest Illinois Hazard Index Rating (See Appendix A for Crossing Priority List).

VII. Financial Need

This narrative must justify the local government's need for assistance from the GCPF. One copy of the applicant's most recent financial audit must be included with your application (local government agencies only).

The County has limited funds available, with hundreds of miles roadway jurisdiction to maintain for basic operations. While this crossing is of high safety concern, the county has limited funds available to implement the project in the near future. Securing GCPF funds would allow for the project timeline to move up and improve safety for all users.

The County's recent financial audit is available upon request.

VIII. Project Schedule

Provide information on when this project is anticipated to commence, or when improvements must be implemented. Provide an approximate timeline listing key milestones concerning the design and/or construction phases of the project.

A preliminary Project Schedule has been developed with key Project Milestones identified below. The Project Schedule can be accelerated or delayed, depending on the ICC's required funding schedule.

- GCPF Award Notice: 4/2021
- Union Pacific RR Coordination: Ongoing (4/2021 - Project Close)
- Design Engineer Consultant Selected: 10/2021
- Preliminary \& ROW Roadway Design (60\%): 3/2022
- Right of Way Acquisition: 6/2022
- Final PS\&E Design (100\%): 8/2022
- Project Construction Bid Opening: 10/2022
- Project Construction: 11/2022
- Project Completion: 6/2023

Forms may be submitted by electronic mail or regular mail. Mailing addresses are noted below:
Email: Submit by Email to ICC.Railsafety@illinois.gov
Regular Mail: Rail Safety Program Administrator Illinois Commerce Commission
527 E. Capitol Avenue
Springfield, Illinois 62701
[NOTE: ALL APPLICATIONS MUST INCLUDE DIGITAL PHOTOS OF THE GRADE CROSSING, HIGHWAYRAIL BRIDGE, or PEDESTRIAN-RAIL BRIDGE THAT IS THE SUBJECT OF THE APPLICATION. ANY APPLICATIONS SUBMITTED WITHOUT THE PHOTOS WILL NOT BE CONSIDERED UNTIL THE PHOTOS HAVE BEEN RECEIVED BY THE ICC RAIL SAFETY SECTION.]

APPENDIX A PROJECT LOCATION MAP \& EXHIBITS

Jackson County Priority List

November 12, 2020

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX	Comments
1	Levee Road (Jacob)	436221J	UP	71.66	Gates	175	2	0.3813	0.0555	0.1056	271,480	
2	Big Lake Rd (Jacob)	436208V	UP	81.7	Gates	50	1	0.2721	0.0462	0.0751	115,243	
3	Crane Rd (De Soto)	431060Y	UP	321.02	Gates	200	1	0.2718	0.0315	0.0820	1,071,561	
4	Hallidaboro Rd (Hallidaboro)	295068D	CN	296.8	Gates	300	1	0.2574	0.0364	0.0809	210,960	
5	$\begin{gathered} \begin{array}{c} \text { Bowlby Road } \\ \text { (De Soto) } \end{array} \\ \hline \end{gathered}$	431059E	UP	321.8	Gates	125	2	0.2451	0.0284	0.0739	58,447	
6	Lovers Lane (Grimsby)	430978W	UP	335.605	Gates	50	1	0.2288	0.0304	0.0643	5,771	
7	Howardton Rd (Grand Tower)	445810X	UP	90.6	Gates	25	1	0.1986	0.0345	0.0589	30,499	
8	Big Muddy Levee Rd (Grand Tower)	445805B	UP	94.19	Gates	25	2	0.1985	0.0296	0.0592	30,048	

ICC Grade Crossing Improvement Funding Previously Secured

APPENDIX B CROSSING PHOTOS

APPENDIX C PROJECT COST ESTIMATE

CRANE ROAD AT-GRADE HWY-RAIL CROSSING IMPROVEMENTS				
GRADE CROSSING PROTECTION FUND APPLICATION				
JACKSON COUNTY, ILLINOIS				
CONCEPT-LEVEL COST ESTIMATE				
Item	Unit	Cost Per Unit	Quantity	Total Cost
Removals	LS	\$20,000.00	1	\$20,000.00
Earth Embankment	CY	\$20.00	1920	\$38,400.00
HMA Surface Course (2")	SY	\$15.00	1940	\$29,100.00
HMA Base Course (7")	SY	\$35.00	1065	\$37,275.00
HMA Base Course (9")	SY	\$60.00	880	\$52,800.00
Aggregate Base Course, Type B 12'	SY	\$50.00	2200	\$110,000.00
HMA Shoulders 9"	SY	\$45.00	125	\$5,625.00
HMA Shoulders 11"	SY	\$60.00	140	\$8,400.00
RR Crossing Removal	EA	\$5,000.00	1	\$5,000.00
RR Concrete Crossing Panels	LF	\$1,200.00	32	\$38,400.00
RR Warning Lights \& Gates	EA	\$275,000.00	1	\$275,000.00
Pavement Marking	LS	\$10,000.00	1	\$10,000.00
Signing	LS	\$2,000.00	1	\$2,000.00
Roadway Traffic Control	LS	\$5,000.00	1	\$5,000.00
Seeding \& Erosion Control	LS	\$2,000.00	1	\$2,000.00
RR Flagging	LS	\$3,000.00	1	\$3,000.00
RR Insurance	LS	\$15,000.00	1	\$15,000.00
Right of Way/Easement	AC	\$5,000.00	0.34	\$1,720.00
SUB-TOTAL				\$658,720
CONTINGENCY (15\%)				\$98,808
UTILITY RELOCATION				\$25,000
ENGINEERING				\$52,500
CONSTRUCTION ENGINEERING				\$33,000
TOTAL COST				\$868,028

Greater Egypt Safety Study

APPENDIX 03: JEF AUBURN LANE

STATE OF ILLINOIS

ILLINOIS COMMERCE COMMISSION TRANSPORTATION BUREAU / RAIL SAFETY SECTION

February 9, 2021
Mr. Tim Marlow, Chairman
Jefferson County Highway Board
750 Old Fairfield Road
Mt. Vernon, IL 62864
Dear Mr. Marlow:
This is in response to the Grade Crossing Protection Fund (GCPF) Grade Crossing Project application that Jefferson County recently submitted for our review and consideration. The application proposes a project to install automatic flashing light signals and gates at the Auburn Lane highway-rail grade crossing (AAR/DOT \#724755V, railroad milepost $95.25-W$) of the Norfolk Southern Railway Company's (NS) track, located near Bluford, Jefferson County.

Commission Staff (Staff) will recommend that the project be included in the Commission's FY 2022-2026 Crossing Safety Improvement Program 5-Year Plan (Plan). Staff will also recommend that a project to install automatic flashing light signals and gates at the Falcon Lane grade crossing (AAR/DOT \#724756C, railroad milepost 94.76-W) of the NS's track, near Bluford, be included in the Plan.

The Commission's review of the Plan will take place in late March with final selection of projects and publication in April 2021. Based on available funding, Staff will recommend to the Commission that the GCPF be used to pay 95% of the eligible costs, with the NS responsible for the remaining installation costs, at both the Auburn Lane and Falcon Lane crossings. The railroad is also responsible for all future maintenance costs associated with the new automatic warning devices at both locations.

I trust this information will be helpful. If you have any questions, or need additional information, please contact me at (312) 636-7760 or Brian.Vercruysse@illinois.gov.

Very truly yours,

Brian Vercruysse
Rail Safety Program Administrator
cc: Brandon Simmons, Jefferson County Engineer

ILLINOIS COMMERCE COMMISSION CROSSING SAFETY IMPROVEMENT PROGRAM

2021 GRADE CROSSING PROTECTION FUND PROJECT APPLICATION

AUBURN LANE GRADE CROSSING

USDOT: 724755V / M.P. 95.25 (NORFOLK SOUTHERN)

JEFFERSON COUNTY, IL
\qquad
Staff: CROSSING SAFETY IMPROVEMENT PROGRAM GRADE CROSSING PROTECTION FUND PROJECT INFORMATION Public Highway - Rail Grade Crossings

I. General Information

II. Project Administrator

Contact Person: Brandon Simmons
Title: County Engineer
Company:
Address: 750 Old Fairfield Road

Email Address (if applicable): countyengineer@jeffil.us

III. General Project Information

Number of School Buses over Crossing per Day:
Do vehicles carrying hazardous materials use crossing: $\quad \square$ Yes \square No
If yes, list the type and approximate number of hazardous material vehicles per day:
Number of tracks through crossing: 1
Distance to, and street name of, the two nearest existing grade separations from location being applied for:
None within 30+ Miles (East) / 10.6 Miles E Green Rd (West)
Crossing is currently: \square Grade Separation \square Highway-Rail Grade Crossing \square No Crossing Existing warning devices at crossing:N
\square Automatic Flashing Light Signals \square STOP Signs Only \square Crossbucks OnlyOther (please specify)
Are railroad signals interconnected with traffic signals at this location:
\square Yes
 No N/A If crossing is currently a grade separation, provide the following information:
\square Highway Over Railroad \square Highway Under Railroad
Number of Traffic Lanes \qquad Width of Pavement
Vertical Clearance

IV. Project Location Map and/or Photographs

A project location map shall be included with the application. The project location map should show the crossing(s) for which application is being made, as well as any other improvements that are being submitted in conjunction with this application. If project is a part of a "corridor" project, indicate the limits of the entire "corridor" on the map. Paper size shall not exceed 11 x 17 inches. Please provide a minimum of 4 digital photos of the existing crossing (photos should show the existing warning devices, the existing crossing surface, and the existing highway approaches).

V. Project Summary.

Application to (check all that apply):

\square Upgrade Circuitry	\square Interconnect Railroad and Traffic Signals at Nearby Intersection
\square Close Adjacent Crossing	\square Construct a Connecting Road Between Crossings
\square Upgrade Warning Devices $\quad \square$ Construct Barrier Medians at Crossing	
\square Other (please specify) Widen Roadway Approach	

Is application for: $\quad \square$ Design Only $\quad \square$ Construction only $\quad \square$ Design and Construction
Is application part of a larger "corridor" project: \square Yes \square No
Use the space below to provide a narrative of the proposed project. Items to include in this section are extenuating circumstances unique to this crossing, such as heavier seasonal traffic, visibility restrictions caused by trees, buildings, etc., proximity of schools and public buildings, etc., which explain why this crossing should be funded. Explain any work to by done by the local agency, such as roadway improvements in the immediate vicinity of the grade separation project. Approximate costs must be listed for each item of work to be done.

The proposed Auburn Lane Grade Crossing Project will improve safety by upgrading the warning devices from passive warning (Crossbucks) to Automatic Flashing Signals \& Gates, widening the roadway approach, and lengthening RR Crossing Pad (See Appendix B for Proposed Layout Exhibit and Appendix C for Associated Cost Estimates).

VI. Evidence of Community Effort and Support

Any preliminary engineering or planning studies, along with cost estimates, that have been prepared for this project should be included with your application. List any past efforts to improve safety at railroad crossings within applicant's jurisdiction. Any studies that have been conducted, regarding railroad crossing elimination or consolidation, must also be included.

A Crossing Safety Analysis and Study was commenced by the Greater Egypt Regional Planning and Development Commission, in partnership with Jefferson County. The study was performed by a consultant, and identified rail crossing locations that have a history of vehicle-train crashes, or have a high exposure index.

The study ranked the Auburn Lane grade crossing at 8th overall, but as the number one (1) safety priority crossing with passive only warning devices. The crossing has two (2) vehicle-train crash recorded. The crossing has a 0.21 annualized existing crash prediction and an Illinois Hazard Index Rating of 2,122 (See Appendix B for Crossing Priority List).

VII. Financial Need

This narrative must justify the local government's need for assistance from the GCPF. One copy of the applicant's most recent financial audit must be included with your application (local government agencies only).

The County has limited funds available, with hundreds of miles roadway jurisdiction to maintain for basic operations. While this crossing is of high safety concern, the county has limited funds available to implement the project in the near future. Securing GCPF funds would allow for the project timeline to move up and improve safety for all users.

The County's recent financial audit is available upon request.

VIII. Project Schedule

Provide information on when this project is anticipated to commence, or when improvements must be implemented. Provide an approximate timeline listing key milestones concerning the design and/or construction phases of the project.

A preliminary Project Schedule has been developed with key Project Milestones identified below. The Project Schedule can be accelerated or delayed, depending on the ICC's required funding schedule.

- GCPF Award Notice: 4/2021
- Norfolk Southern RR Coordination: Ongoing (4/2021 - Project Close)
- County Highway Department Project Coordination: Ongoing (4/2021 - Project Close)*
- Project Construction Begins: 9/2021*
- Project Completion: 11/2021*
*Project Schedule assumes the responsibility of all project coordination, equipment \& personnel will be borne by the County Highway Department for all roadway pavement reconstruction/widening. All RR signals and Crossing Pad is assumed to be installed by the RR.

Forms may be submitted by electronic mail or regular mail. Mailing addresses are noted below:
Email: Submit by Email to ICC.Railsafety@illinois.gov
Regular Mail: Rail Safety Program Administrator Illinois Commerce Commission
527 E. Capitol Avenue
Springfield, Illinois 62701
[NOTE: ALL APPLICATIONS MUST INCLUDE DIGITAL PHOTOS OF THE GRADE CROSSING, HIGHWAYRAIL BRIDGE, or PEDESTRIAN-RAIL BRIDGE THAT IS THE SUBJECT OF THE APPLICATION. ANY APPLICATIONS SUBMITTED WITHOUT THE PHOTOS WILL NOT BE CONSIDERED UNTIL THE PHOTOS HAVE BEEN RECEIVED BY THE ICC RAIL SAFETY SECTION.]

APPENDIX A PROJECT LOCATION MAP \& EXHIBITS

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	30-YEAR CRASH HISTORY	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX	Comments
1	$\begin{gathered} \text { North St } \\ \text { (Mt. Vernon) } \\ \hline \end{gathered}$	724772L	NS	86.94	Flashing Lights	225	1	0.4424	0.0429	0.1363	117,937	
2	Tolle Rd (Mt. Vernon)	724774A	NS	86.21	Gates	1300	2	0.3300	0.0320	0.1017	6,045,910	
3	Wells Bypass (Mt. Vernon)	431021H	UP	121.57	Gates	3050	1	0.3258	0.0055	0.0840	2,736,753	
4	Idlewood Rd (Mt. Vernon)	167748X	UP	271.24	Gates	325	1	0.3230	0.0451	0.0974	2,920,247	
5	East Stagecoach Road (Waltonville)	069232J	BNSF	141.12	Crossbucks	125	2	0.3072	0.0298	0.0947	1,870	
6	Chestnut Ln (Opdyke)	724762F	NS	89.88	Gates	950	1	0.2873	0.0278	0.0885	1,778,837	
7	E Oakton Road (Mt. Vernon)	167747R	UP	271.75	Gates	150	2	0.2725	0.0380	0.0822	97,486	
8	Auburn Lane (Bluford)	724755V	NS	95.25	Crossbucks	25	2	0.2119	0.0205	0.0653	2,122	
9	Beal Rd (Dix)	724806D	NS	79.63	Gates	175	1	0.2088	0.0202	0.0643	33,500	
10	Stanford Ln (Bluford)	724758R	NS	92.94	Gates	150	1	0.2010	0.0195	0.0619	22,470	
11	$\begin{aligned} & \text { Douthit Ln } \\ & \text { (Dix) } \end{aligned}$	724779J	NS	75.98	Gates	125	1	0.1921	0.0186	0.0592	14,010	
12	$\begin{gathered} \text { Park Ave } \\ \text { (Mt. Vernon) } \end{gathered}$	724773T	NS	86.48	Gates	100	1	0.1815	0.0176	0.0559	7,441	
13	East Midnight Road (Bonnie)	167602E	UP	285.96	Gates	25	1	0.1767	0.0247	0.0533	3,796	
14	Dubois Rd (Waltonville)	072320X	BNSF	144.655	Gates	75	1	0.1323	0.0103	0.0371	280	
15	E Freesia Rd (Mt. Vernon)	431022P	UP	120.68	Crossbucks	175	1	0.0829	0.0058	0.0254	4,377	
16	Main St. (Mt. Vernon)	915458F	EVWR	407.81	Crossbucks	400	1	0.0199	0.0001	0.0061	-	

[^6]
APPENDIX B CROSSING PHOTOS

APPENDIX C PROJECT COST ESTIMATE

AUBURN LANE AT-GRADE HWY-RAIL CROSSING IMPROVEMENTS				
GRADE CROSSING PROTECTION FUND APPLICATION				
JEFFERSON COUNTY, ILLINOIS				
CONCEPT-LEVEL COST ESTIMATE				
Item	Unit	Cost Per Unit	Quantity	Total Cost
Removals	LS	\$15,000.00	1	\$15,000.00
Earth Excavation	CY	\$35.00	100	\$3,500.00
HMA Surface Course (2")	SY	\$15.00	493	\$7,395.00
HMA Base Course (7")	SY	\$35.00	493	\$17,255.00
Aggregate Base Course, Type B 12"	SY	\$55.00	493	\$27,115.00
RR Concrete Crossing Pad	LF	\$1,200.00	32	\$38,400.00
RR Warning Lights \& Gates	EA	\$275,000.00	1	\$275,000.00
Pavement Marking	LS	\$5,000.00	1	\$5,000.00
Signing	LS	\$2,500.00	1	\$2,500.00
Roadway Traffic Control	LS	\$2,500.00	1	\$2,500.00
Seeding \& Erosion Control	LS	\$2,500.00	1	\$2,500.00
RR Flagging	LS	\$3,000.00	1	\$3,000.00
RR Insurance	LS	\$10,000.00	1	\$10,000.00
SUB-TOTAL				\$409,165
CONTINGENCY (15\%)				\$61,375
DESIGN ENGINEERING				\$43,000
CONSTRUCTION ENGINEERING				\$27,000.00
TOTAL COST				\$540,539.75

Greater Egypt Safety Study

APPENDIX 03: PER OLD DUOUOIN ROAD

دCMT

STATE OF ILLINOIS

ILLINOIS COMMERCE COMMISSION TRANSPORTATION BUREAU / RAIL SAFETY SECTION

Mr. Bobby Kelly, Chairman
Perry County Commission
3698 State Route 13/127
Pinckneyville, IL 62274
Dear Mr. Kelly:
This is in response to the Grade Crossing Protection Fund (GCPF) Grade Crossing Project application that Perry County recently submitted for our review and consideration. The application proposes a project to install automatic flashing light signals and gates at the Old DuQuoin Road highway-rail grade crossing (AAR/DOT \#293679L, railroad milepost 73.24-GE) of the Illinois Central Railroad's (IC) track, located near DuQuoin, Perry County.

Commission Staff (Staff) will recommend that the project be included in the Commission's FY 2022-2026 Crossing Safety Improvement Program 5-Year Plan (Plan). The Commission's review of the Plan will take place in late March with final selection of projects and publication in April 2021.

Based on available funding, Staff will recommend to the Commission that the GCPF be used to pay 95% of the eligible costs, with the IC responsible for the remaining installation costs. The railroad is also responsible for all future maintenance costs associated with the new automatic warning devices.

I trust this information will be helpful. If you have any questions, or need additional information, please contact me at (312) 636-7760 or Brian.Vercruysse@illinois.gov.

Very truly yours,

Brian Vercruysse
Rail Safety Program Administrator
cc: Brian Otten, Perry County Engineer

ILLINOIS COMMERCE COMMISSION CROSSING SAFETY IMPROVEMENT PROGRAM

2021 GRADE CROSSING PROTECTION FUND PROJECT APPLICATION

OLD DU QUOIN ROAD GRADE CROSSING

 USDOT: 293679L / M.P. 73.24 (CN RAILWAY)

JANUARY 15, 2021
\qquad

I. General Information

| Applicant Type: | \square | City | \square | Village | \square | Town $\quad \square$ County \square Township | \square Railroad |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Resubmission: | \square | Yes | \square | No | | RR Company: CN Railway | |

Date: 01/15/21
Applicant: County of Perry, Illinois Population: 21,174

Chief Elected Official:	Bobby Kelly	Title:County Commission Chairman
Business Address:	$\underline{3698 \text { State Route 13/127 }}$	

City: Pinckneyville
State: Illinois
Zip: 62274
Business Phone:
(618) 318-0689

Business Fax:
Email Address (if applicable):
State Legislative District:
botten@perryil.com
House Districts 115 \& 116 / Senate District 58

II. Project Administrator

Contact Person: Mr. Brian Otten
Title: County Engineer
Company:
County Of Perry, Illinois
Address: 3698 State Route 13/127

City:	Pinkneyville	State: Illinois
Business Phone:	$\underline{\text { (618) 318-0689 }}$	Bip: 62274

Email Address (if applicable): botten@perryil.com

III. General Project Information

County: Perry County	\square In City $\quad \checkmark$ Near City City:	DuQuoin
Street / Roadway Name:	Old DuQuoin Road	
Railroad: CN Railway	Crossing Number: 293679L	Railroad Milepost 73.24

Average Daily Traffic (ADT): $\quad \frac{700}{\text { (Number of Cars per Day over the Crossing) }}$ Daily Train Traffic: $\frac{2}{\text { (Number of Trains per Day) }}$
$\begin{array}{llll}\text { Number of School Buses over Crossing per Day: } & \underline{2} & \\ \text { Do vehicles carrying hazardous materials use crossing: } & \square \text { Yes } & \square \text { No }\end{array}$
If yes, list the type and approximate number of hazardous material vehicles per day:
Number of tracks through crossing: 1
Distance to, and street name of, the two nearest existing grade separations from location being applied for: 20+ Miles (East) / 2.3 Miles E Poplar St. (West)
Crossing is currently: \square Grade Separation \square Highway-Rail Grade Crossing \square No Crossing Existing warning devices at crossing:
\square None $\quad \square$ Center Median or Median BarriersAutomatic Flashing Light Signals and GatesAutomatic Flashing Light Signals STOP Signs Only
\square Crossbucks Only
\square Other (please specify)
Are railroad signals interconnected with traffic signals at this location:
\square Yes
 No N/A If crossing is currently a grade separation, provide the following information:
\square Highway Over Railroad \square Highway Under Railroad
Number of Traffic Lanes \qquad Width of Pavement
Vertical Clearance

IV. Project Location Map and/or Photographs

A project location map shall be included with the application. The project location map should show the crossing(s) for which application is being made, as well as any other improvements that are being submitted in conjunction with this application. If project is a part of a "corridor" project, indicate the limits of the entire "corridor" on the map. Paper size shall not exceed 11 x 17 inches. Please provide a minimum of 4 digital photos of the existing crossing (photos should show the existing warning devices, the existing crossing surface, and the existing highway approaches).

V. Project Summary.

Application to (check all that apply):

\square Upgrade Circuitry	\square Interconnect Railroad and Traffic Signals at Nearby Intersection
\square Close Adjacent Crossing	\square Construct a Connecting Road Between Crossings
\square Upgrade Warning Devices	\square Construct Barrier Medians at Crossing

\square Other (please specify)
Is application for: $\quad \square$ Design Only $\quad \square$ Construction only $\quad \square$ Design and Construction
Is application part of a larger "corridor" project: \square Yes \square No
Use the space below to provide a narrative of the proposed project. Items to include in this section are extenuating circumstances unique to this crossing, such as heavier seasonal traffic, visibility restrictions caused by trees, buildings, etc., proximity of schools and public buildings, etc., which explain why this crossing should be funded. Explain any work to by done by the local agency, such as roadway improvements in the immediate vicinity of the grade separation project. Approximate costs must be listed for each item of work to be done.

The proposed Old DuQuoin Road Grade Crossing Project will improve safety a by upgrading the warning devices from Flashing Automatic Light Signals to Automatic Flashing Light Signals \& Gates (See Appendix A for Proposed Layout Exhibit and Appendix C for Associated Cost Estimates).

This crossing has significant daily traffic (700 ADT) compared to other adjacent county highway-rail grade crossings. The study

VI. Evidence of Community Effort and Support

Any preliminary engineering or planning studies, along with cost estimates, that have been prepared for this project should be included with your application. List any past efforts to improve safety at railroad crossings within applicant's jurisdiction. Any studies that have been conducted, regarding railroad crossing elimination or consolidation, must also be included.

A Crossing Safety Analysis and Study was commenced in 2020 by the Greater Egypt Regional Planning and Development Commission, in partnership with Perry County. The study was performed by a consultant, and identified rail crossing locations that have a history of vehicle-train crashes, or have a high exposure index.

The study ranked this crossing as 3rd overall, but as number one (1) of county maintained roadways. While the crossing does not have a history of crashes, the study identified the Old Du Quoin crossing with a reduced safety rating due to the significant daily roadway traffic. The crossing has an existing annualized crash prediction of 0.14 (See Appendix A for Crossing Priority List).

VII. Financial Need

This narrative must justify the local government's need for assistance from the GCPF. One copy of the applicant's most recent financial audit must be included with your application (local government agencies only).

The County has limited funds available, with hundreds of miles roadway jurisdiction to maintain for basic operations. While this crossing is of high safety concern, the county has limited funds available to share costs in upgrading Railroad crossing warning devices. Securing GCPF funds would allow for the project timeline to move up and improve safety for all users.

The County's recent financial audit is available upon request.

VIII. Project Schedule

Provide information on when this project is anticipated to commence, or when improvements must be implemented. Provide an approximate timeline listing key milestones concerning the design and/or construction phases of the project.

A preliminary Project Schedule has been developed with key Project Milestones identified below. The Project Schedule can be accelerated or delayed, depending on the ICC's required funding schedule.

- GCPF Award Notice: 4/2021
- Union Pacific RR Coordination: Ongoing (4/2021 - Project Close)
- Project Construction Begins: 9/2021*
- Project Completion: 11/2021*
*Project Schedule assumes the responsibility of project implementation will be borne by the CN Railway for all Crossing Pad rehabilitation and Automatic Flashing Light Signals \& Gates installation.

Forms may be submitted by electronic mail or regular mail. Mailing addresses are noted below:
Email: Submit by Email to ICC.Railsafety@illinois.gov
Regular Mail: Rail Safety Program Administrator Illinois Commerce Commission
527 E. Capitol Avenue
Springfield, Illinois 62701
[NOTE: ALL APPLICATIONS MUST INCLUDE DIGITAL PHOTOS OF THE GRADE CROSSING, HIGHWAYRAIL BRIDGE, or PEDESTRIAN-RAIL BRIDGE THAT IS THE SUBJECT OF THE APPLICATION. ANY APPLICATIONS SUBMITTED WITHOUT THE PHOTOS WILL NOT BE CONSIDERED UNTIL THE PHOTOS HAVE BEEN RECEIVED BY THE ICC RAIL SAFETY SECTION.]

APPENDIX A PROJECT LOCATION MAP \& EXHIBITS

(2)

Perry County Priority List
December 1, 2020

RANK	ROAD NAME (NEAR TOWNSHIP)	USDOT \#	RR	RR M.P.	EXISTING PROTECTION	ADT	$\begin{aligned} & \text { 30-YEAR } \\ & \text { CRASH } \\ & \text { HISTORY } \end{aligned}$	EX. CRASH PREDICTION (30-YEAR ANNUALIZED)	FATAL	INJURY	ILLINOIS HAZARD INDEX	LATITUDE	LONGITUDE	Comments
1	W Parker St. (Pickneyville)	840401T	CN	61.1	Crossbucks	2050	0	0.3272	0.3272	0.3272	-	-	-	
2	Pick Road (Pinckneyville)	296166X	CN	63.31	Gates	125	2	0.1508	0.0171	0.0463	3,499	38.0571500	-89.3525850	
3	Old Du Quoin Road (Du Quoin)	293679L	CN	73.24	Crossbucks	700	0	0.1415	0.1415	0.1415	-	-	-	
4	Valier Carpet Rd (Tamaroa)	430969x	UP	99.28	Crossbucks	100	1	0.1048	0.0087	0.0328	1,047	38.1078480	-89.2786770	
5	Cutler-Trico Rd (Percy)	294880 T	CN	581.25	Crossbucks	99	1	0.1045	0.0020	0.0269	275	38.0005940	-89.5660990	
6	Tanglefoot Road (Du Quoin)	2961697	CN	64.84	Crossbucks	25	2	0.1006	0.0114	0.0309	124	38.0474550	-89.3272900	
7	Lazy W Rd (Du Quoin)	296176D	CN	66.64	Gates	25	1	0.0972	0.0122	0.0298	36	38.0360340	-89.2976500	
8	District 204 Road (Pinckneyville)	430972F	Mid America	97.72	Crossbucks	75	0	0.0962	0.0962	0.0962	-	-	-	
9	Camel Road (Cutler)	431177G	Mid America	83.01	Crossbucks	50	0	0.0851	0.0851	0.0851	-	-	-	
10	Kangaroo Road (Cutler)	431178N	Mid America	83.23	Crossbucks	50	0	0.0851	0.0851	0.0851	-	-	-	
11	Crocus Road (Pickneyville)	431188 U	Mid America	88.64	Crossbucks	25	0	0.0688	0.0688	0.0688	-	-	-	
12	Vole Rd (Cutler)	431166 U	UP	81.85	Crossbucks	25	1	0.0687	0.0067	0.0212	29	38.0281510	-89.5795560	
13	Division St. (Du Quoin)	293675J	CN	71.23	Crossbucks	400	0	0.0088	0.0088	0.0088	-	-	-	
14	Washington (Du Quoin)	293676R	CN	71.42	Crossbucks	12500	1	0.0088	0.0088	0.0088	-	-	-	

ICC Grade Crossing Improvement Funding Previously Secured
Crossing Located within Township/Municipality

APPENDIX B CROSSING PHOTOS

APPENDIX C PROJECT COST ESTIMATE

OLD DU QUOIN ROAD AT-GRADE HWY-RAIL CROSSING IMPROVEMENTS				
GRADE CROSSING PROTECTION FUND APPLICATION				
PERRY COUNTY, ILLINOIS				
CONCEPT-LEVEL COST ESTIMATE				
Item	Unit	Cost Per Unit	Quantity	Total Cost
Removals	LS	\$5,000.00	1	\$5,000.00
RR Warning Lights \& Gates	EA	\$275,000.00	1	\$275,000.00
Signing	LS	\$2,000.00	1	\$2,000.00
Roadway Traffic Control	LS	\$5,000.00	1	\$5,000.00
RR Flagging	LS	\$3,000.00	1	\$3,000.00
RR Insurance	LS	\$10,000.00	1	\$10,000.00
SUB-TOTAL				\$300,000
CONTINGENCY (15\%)				\$45,000
DESIGN ENGINEERING				\$12,000
CONSTRUCTION ENGINEERING				\$15,000
TOTAL COST				\$372,000

[^0]: ${ }^{1}$ As of February 2020

[^1]: CMF＝Crash Modification Factor
 ＊＊EUAC＝Estimated Uniform Annual Cos

[^2]: Note: Required means that the sign and/or plaque shall be used, recommended means that the sign and/or plaque should be used, and optional means that the sign and/or plaque may be used.
 See Section 2 C .06 for roadways with less than 1,000 ADT.

[^3]:

[^4]: ICC Grade Crossing Improvement Funding Previously Secured

[^5]: ICC Grade Crossing Improvement Funding Previously Secured

[^6]: ICC Grade Crossing Improvement Funding Previously Secured

