Western Crab Orchard Creek Watershed Planning Committee Meeting 2

February 23, 2021 10:00 AM

<u>Agenda</u>

- I. Welcome and Introductions
- II. Review of Previous Meetings
- III. Completed Elements
- IV. Element C: Management Measures
- V. Element D: Technical and Financial Assistance
- VI. Element E: Education/ Outreach
- VII. Element F-I: Implementation and Monitoring Strategy
- VIII. Needs from Committee/ Meeting Schedule
- IX. Adjourn

Review of Previous Meetings

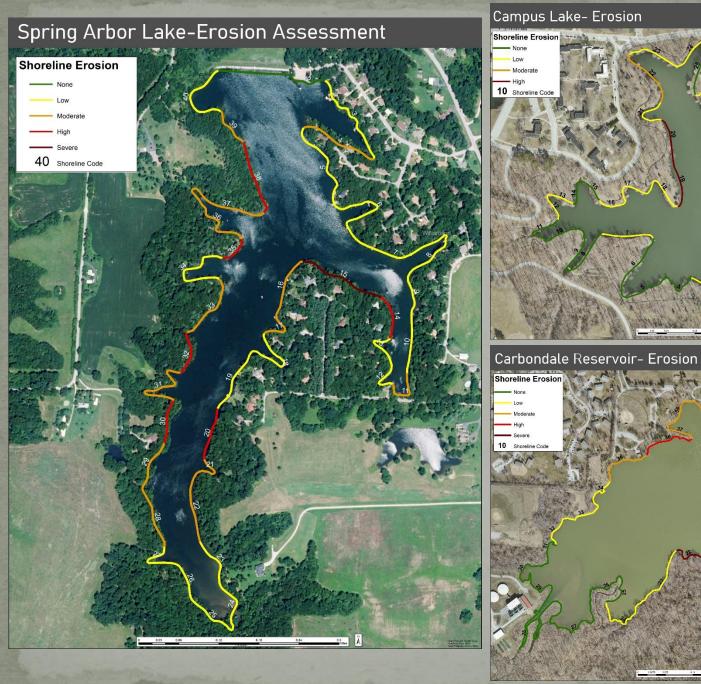
- Nine Minimum Elements of a Watershed-based Plan
- Synopsis of the Western Crab Orchard Creek Watershed Inventory
- Concerns within the watershed
 - 303(d) waterbodies
 - Impairments
- Preliminary Goals

Completed Elements of the Plan

Components include:

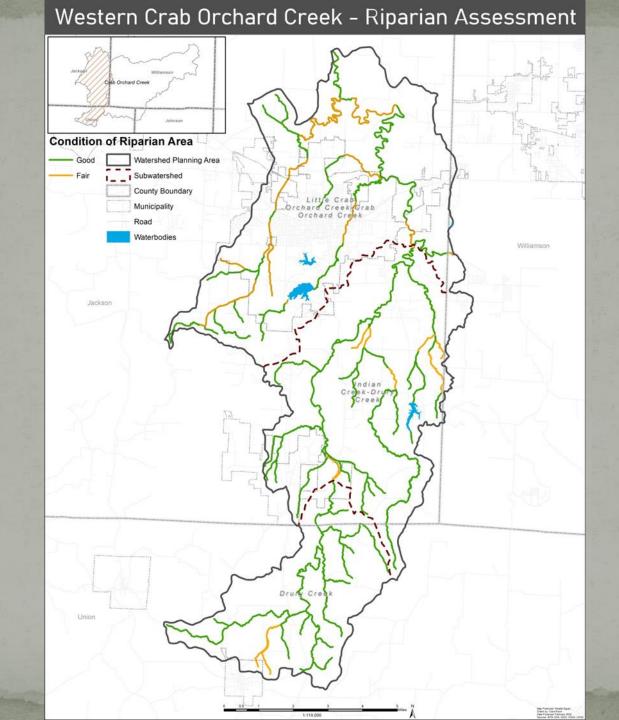
- Element A- Identification of causes of impairment and pollutant sources that need to be controlled to achieve load reductions identified in watershed plan.
- **Element B-** An estimate of the load reductions expected from management measures

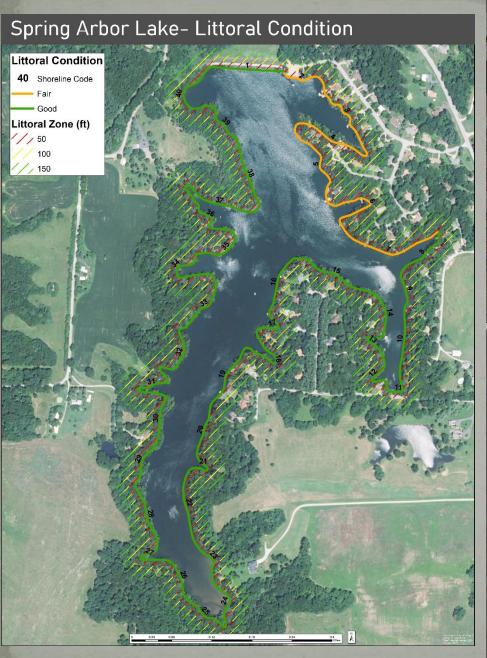
Element A- Impairments and Sources (Inventory and Assessment)

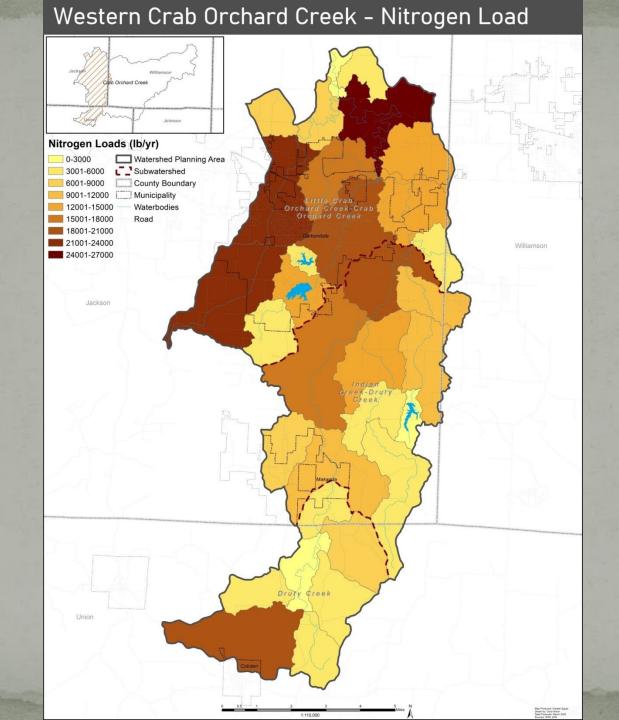

• **Sections included:** Geography, Geology, Soils, Jurisdictions, Demographics, Land Use, Assessment, Water Quality

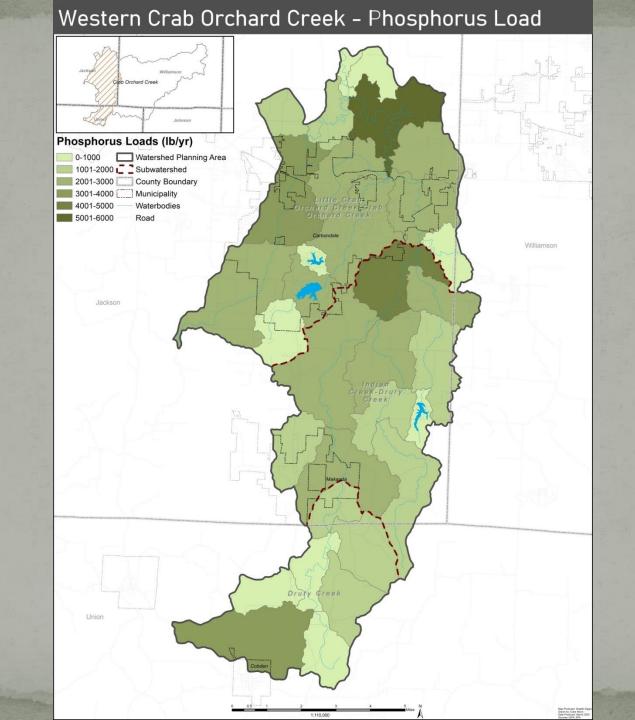
• Assessment: Erosion, Channelization, Riparian Areas (Streams and Lakes)

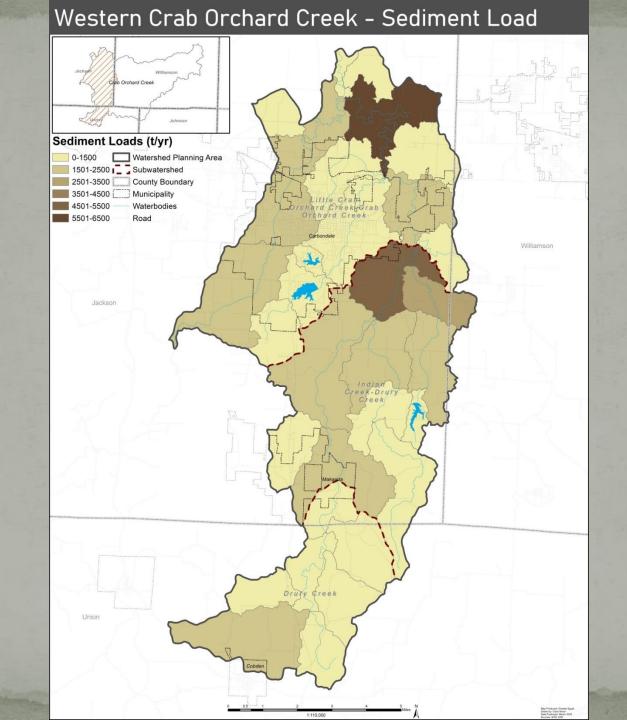
Water Quality: Waterbody Uses, Water Quality Data, Municipal Reports,
 NPDES Outfalls, Pollutant Load Analysis, Pollutant Load


 Reduction Targets


Western Crab Orchard Creek - Erosion Assessment Cob Orchard Creek **Extent of Erosion** Watershed Planning Area I _ _ I Subwatershed County Boundary Moderate Orchard Creek Crab Orchard Creek Municipality Road Waterbodies Williamson Jackson Union






Pollutant Loads

• Watershed-wide Pollutant Loading

Source	N Load (lb/yr)	Percent of Total Load	P Load (lb/yr)	Percent of Total Load	Sediment Load (tons/yr)	Percent of Total Load
Urban	81,390.36	24.88%	12,527.90	20.79%	1,870.49	3.91%
Cropland	31,256.72	9.56%	9,009.52	14.95%	5,606.23	11.71%
Pastureland	70,201.03	21.46%	8,968.51	14.88%	3,733.30	7.80%
Forest and Grassland	8,619.41	2.64%	3,998.50	6.63%	845.65	1.77%
Groundwater	78,323.21	23.94%	3,696.34	6.13%	0.00	0.00%
Streambank	57,308.84	17.52%	22,063.91	36.61%	35,818.03	74.82%
Total	327,099.55		60,264.68		47,873.69	

Set Water Quality Goals and Load Reduction Targets

- Achieve water quality standards and total maximum daily loads for specific pollutants
- Base nutrient reduction goals off of the IL Nutrient Loss Reduction Strategy

Identify load reduction targets for specific nutrients/ pollutants

Waterbody	Assessment Unit ID	Size	Causes of Impairment(s)	Sources of Impairment(s)
Piles Fork	IL_NDB-03	7.2	Alteration in stream- side or littoral vegetative covers, Methoxychlor, Other flow regime alterations, Dissolved Oxygen	Highway/Road/Bridge Runoff (Non-construction related), Impacts from Hydrostructure Flow Regulations/modification, Streambank Modifications/destabilization, Urban Runoff/Storm Sewers, Upstream Impoundments
Campus Lake	IL_RNZH	41.2 ac	Mercury, Polychlorinated biphenyls, Total Suspended Solids(TSS), Phosphorus(Total)	Atmospheric Deposition-Toxics, Source Unknown, Other Spill Related Impacts, Waterfowl, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland

IL Nutrient Loss Reduction Strategy (NLRS)

- Collaborative effort between IEPA, IL Dept. of Agriculture, and the IL NLRS Policy Working Group and subcommittees
- Develop strategies and promote best management practices (BMP) for nutrient runoff
- Goals include: 25% reduction in phosphorus load (2025)

15% reduction in nitrate-nitrogen load (2025)

Eventual goal is 45% for both nutrients

Load Reduction Targets

Watershed	SMU ID	Nitrogen (percent of total)	Reduction Target (percent of total)		Reduction larget		Sediment Load Reduction Target (tons)
Western Crab Orchard Creek	orchard - 0.15 49,064.93		0.25	0.25 15,066.17		11,968.42	
		S	ubwatershed Load	Reduction Targets			
Drury Creek	1.00	0.15	7,204.97	0.15	2,214.49	0.15	1,766.64
Indian Creek- Drury Creek	2.00	0.30	14,495.91	0.34	5,061.37	0.41	4,877.80
Little Crab Orchard Creek	3.00	0.56	27,364.06	0.52	7,790.31	0.44	5,323.98
TOTAL			49,064.93		15,066.17		11,968.42

Concerns Within the Watershed

EPA 303d List of Impaired Waters by Subwatershed:

Drury Creek Subwatershed:

Drury Creek

Indian Creek Subwatershed:

- Indian Creek
- Sycamore Creek

Little Crab Orchard Creek Subwatershed:

- Big Muddy River
- Crab Orchard Creek
- Eek Creek
- Little Crab Orchard Creek West
- Piles Fork Creek
- Carbondale City Lake
- Campus Lake

Crab Orchard Creek Subwatershed 303d Information

Waterbody	Assessment Unit ID	Causes of Impairment(s)	Sources of Impairment(s)
Big Muddy River	IL_N-16	Dissolved Oxygen, Sedimentation/Siltation, Mercury	Non-irrigated Crop Production, Natural Sources, Atmospheric Deposition- Toxics, Source Unknown
Crab Orchard Creek	IL-ND-01	Mercury	Atmospheric Deposition-Toxics, Source Unknown
Crab Orchard Creek	IL-ND-02	Manganese, Other flow regime alterations, Dissolved Oxygen	Source Unknown, Impacts from Hydrostructure Flow Regulations/modification, Upstream Impoundments
Crab Orchard Creek	IL-ND-11	Dissolved Oxygen, Cause Unknown	Source Unknown
Eek Creek	IL_NDBA-01	Alteration in stream-side or littoral vegetative covers, Dissolved Oxygen, Water Temperature, Loss of Instream Cover	Channelization, Industrial Land Treatment, Loss of Riparian Habitat, Rcra Hazardous Waste Sites, Crop Production (Crop Land or Dry Land), Agriculture, Habitat Modification- other than Hydromodification
Little Crab Orchard Creek- West	IL_NDA-01	Alteration in stream-side or littoral vegetative covers, Methoxychlor, Dissolved Oxygen	Loss of Riparian Habitat, Streambank Modifications/destabilization, Crop Production (Crop Land or Dry Land), Urban Runoff/Storm Sewers, Livestock (Grazing or Feeding Operations)
Piles Fork	IL_NDB-03	Alteration in stream-side or littoral vegetative covers, Methoxychlor, Other flow regime alterations, Dissolved Oxygen	Highway/Road/Bridge Runoff (Non-construction related), Impacts from Hydrostructure Flow Regulations/modification, Streambank Modifications/destabilization, Urban Runoff/Storm Sewers, Upstream Impoundments
Campus Lake	IL_RNZH	Mercury, Polychlorinated biphenyls, Total Suspended Solids(TSS), Phosphorus(Total)	Atmospheric Deposition-Toxics, Source Unknown, Other Spill Related Impacts, Waterfowl, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland
Carbondale City Lake	IL_RNI	Mercury, Total Suspended Solids(TSS), Phosphorus (Total)	Atmospheric deposition-Toxics, Source Unknown, Littoral/shore Area Modifications (Non-riverine), Municipal Point Source Discharges, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland

Indian Creek-Drury Creek Subwatershed 303d Information

Waterbody	Assessment Unit ID	Causes of Impairment(s)	Sources of Impairment(s)
Drury Creek	IL_NDC-02	Dissolved Oxygen	Acid Mine Drainage, Highway/Road/Bridge Runoff(Non- construction Related), Impacts from Abandoned Mine Lands (Inactive), Streambank Modifications/destabilization, Crop Production (Crop Land or Dry Land), Agriculture
Indian Creek	IL_NDCB-01	Alteration in stream-side or littoral vegetative covers, Low flow alterations, Dissolved Oxygen, Changes in Stream Depth and Velocity Patterns	Streambank Modifications/destabilization, Habitat Modicication-other than Hydromodification, Loss of Riparian Habitat, Crop Production (Crop Land or Dry Land), Agriculture
Sycamore Creek	IL_NDCA	Dissolved Oxygen, pH	Acid Mine Drainage, Impacts from Abandoned Mine Lands (Inactive), Loss of Riparian Habitat, Crop Production (Crop Land or Dry Land), Agriculture

Drury Creek Subwatershed 303d Information

Waterbody	Assessment Unit ID	Causes of Impairment(s)	Sources of Impairment(s)
Drury Creek	IL-NDC-01	Alteration in stream-side or littoral vegetative covers, Dissolved Oxygen	Loss of Riparian Habitat, Source Unknown

Preliminary Goals

- Erosion along streambank/shoreline
- Address 303(d) Impairments:
 - Dissolved Oxygen
 - pH
 - Sedimentation/Siltation
 - Mercury
 - Manganese
 - Water Temperature
 - Methoxychlor
 - TSS
 - Phosphorus
 - Polychlorinated biphenyls

- Address runoff from urban/agricultural areas
- Encourage BMP for agricultural areas
- Increase public involvement

Element C:

Describe management measures that will achieve load reductions and targeted critical areas

Prerequisites for recommending best management practices (BMP)

- Identify sources of pollutants and impairments to waterbodies
- Define pollutant loads for watershed and subwatersheds
- Develop pollutant load reduction targets

BMP Checklist

- Identify potential BMP
- Goals of the Plan
- Watershed Council/ Public input
- Land Use
- Site-specific/ Watershed-wide measures
- Load Reductions
- Cost

Identify Potential Management Measures

- Create a list of BMP
- Find speakers to discuss successful implementation

	Structural Practices	Nonstructural Practices
Agriculture	Contour buffer strips Grassed waterway Herbaceous wind barriers Mulching Live fascines Live staking Livestock exclusion fence (prevents livestock from wading into streams) Revetments Riprap Sediment basins Terraces Waste treatment lagoons	Brush management Conservation coverage Conservation tillage Educational materials Erosion and sediment control plan Nutrient management plan Pesticide management Prescribed grazing Residue management Requirement for minimum riparian buffer Rotational grazing Workshops/training for developing nutrient management plans

	Structural Practices	Nonstructural Practices
Urban	 Bioretention cells Breakwaters Brush layering Infiltration basins Green roofs Live fascines Marsh creation/restoration Establishment of riparian buffers Riprap Stormwater ponds Sand filters Sediment basins Tree revetments Vegetated gabions Water quality swales Clustered wastewater treatment systems 	 Planning for reduction of impervious surfaces (e.g., eliminating or reducing curb and gutter) Management programs for onsite and clustered (decentralized) wastewater treatment systems Educational materials Erosion and sediment control plan Fertilizer management Ordinances Pet waste programs Pollution prevention plans No-wake zones Setbacks Stormdrain stenciling Workshops on proper installation of structural practices Zoning overlay districts Preservation of open space Development of greenways in critical areas

BMP Considerations

Goals of the Plan

- Incorporate objectives in plan with BMP selection
- Goals and BMP selection can vary in size and scope

Public Input

- Local knowledge of watershed issues
- Attempt to reach out to larger group beyond planning council
- Public meetings

Public Input

- Watershed Planning Committee suggestions
- Public input and acceptance of proposed BMP
- May require meeting with individuals or groups

ВМР	Target Area (Be as specific as possible)	Amount (If applicable)	Unit (If applica
e.g. Grassed Waterway	Farmer Joe's Property, NE Lot	2.5	acres
e.g. Permeable Pavement	Schnuck's Western Parking Lot	20,000	square fe
e.g. Streambank Stabilization	Drury Creek - Adjacent to Makanda Boardwalk	600	feet
		1	į.
		7	- 1
	-	5	
		0	

Land Use

Agricultural/ Forested/ Urban

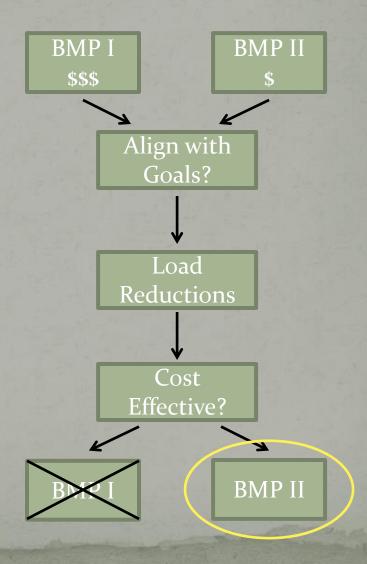
- Land use in Illinois
- Can dictate types of BMP
- Various limitations for each category

Source: Living History Farr

Location of Management Measures

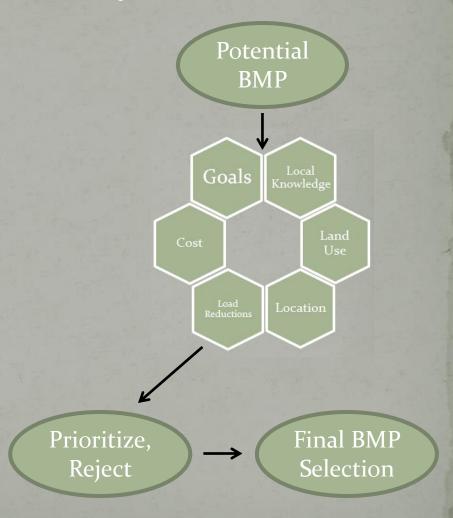
- Watershed-wide practices
- Site-specific BMP

Load Reductions


- Calculate load reductions for BMP
 - Various models
- Load reductions should be for watershed-wide and site-specific BMP
- Consider reduction targets

DMD	Amount	Heit	Load Reductions- lbs/ yr (N,P, TSS, BOD, COD), ton/yr- (Sediment)							
BMP	Amount	Unit	N	Р	Sediment	TSS	BOD	COD		
Conservation Tillage	306.5	acres	1467	786	671	1	-	-		
Green Roof	2	acres	17	1	-	1723	86	471		
Porous Pavement	20	acres	784	59	-	92934	-	34608		
Streambank Stabilization	43,349	feet	4421.6	2210.8	2210.8	ı	-	-		
	_	TOTALS:	6689.6	3056.8	2881.8	94657	86	35079		
			N	Р	Sediment	TSS	BOD	COD		

General Area BMP		Map	Target Area	A	Unit		Load Re	ductions- lbs/	yr (N,P, TSS,	BOD, COD),	ton/yr- (Sed	liment)	
(Contributing Area)	BIVIP	ID	(Reach Code)	Amount	Unit	N	Р	Sediment	TSS	BOD	COD	к	Priority
		19	7140106001218	196	feet	59	32	29	-	-	-		
	Agricultural Filter Strip	20	7140106001218	3543	feet	873	468	405	ı	-	-	-	Н
	Agricultural Filter Strip	21	7140106001218	1340	feet	383	205	182	-	-	-	-	Н
		22	7140106006989	503	feet	59	32	29	-	-	-	-	L
		47	7140106001218	587	feet	40.9	20.5	20.5	-	-	-	-	L
		48	7140106001218	897	feet	62.5	31.3	31.3	-	-	-	-	L
		49	7140106001218	713	feet	277.3	138.6	138.6	-	-	-	-	L
North Herrin	Grassed Waterways	50	7140106001218	547	feet	72.1	36	36	-	-	-	-	L
Tributary	Grasseu Waterways	51	7140106001218	1111	feet	136	68	68	-	-	-	-	L
Tributary		52	7140106001218	403	feet	17.6	8.8	8.8	-	-	-	-	L
		53	7140106001218	252	feet	16.1	8	8	-	-	-	-	М
		54	7140106001218	375	feet	37.3	18.7	18.7	-	-	-	-	М
	Streambank Stabilization	86	7140106001218	206	feet	7	3.5	3.5	-	-	-	-	L
		87	7140106001218	1052	feet	36	18	18	-	-	-	-	М
	Vegetative Filter Strip	106	7140106001218	1304	feet	79	10	-	7773	375	2061	-	М
		109	7140106001218	194	feet	3	0	-	825	13	176	-	L
		110	7140106001218	1087	feet	13	2	0	1196	59	297	-	L
	Agricultural Filter Strip	8	7140106001217	441	feet	22	12	11	-	-	-	-	L
		9	7140106001217	492	feet	110	59	54	-	-	-	-	L
		37	7140106001217	348	feet	76.9	38.5	38.5	-	-	-	-	М
		38	7140106001217	799	feet	108.7	54.3	54.3	-	-	-	-	М
	Grassed Waterways	39	7140106007055	521	feet	62	31	31	-	-	-	-	L
South Herrin		40	7140106007055	829	feet	98.7	49.3	49.3	-	-	-	-	L
Tributary		41	7140106007055	360	feet	32.1	16.1	16.1	-	-	-	-	L
	Detention Basin	29	7140106001217	10	acres	18	2	-	3564	61	290	-	М
	Determion pasin	30	7140106001217	12	acres	14	2	-	2398	36	184	-	М
		82	7140106001217	520	feet	265.2	132.6	132.6	-	-	-	-	Н
	Streambank Stabilization	83	7140106001217	955	feet	568.4	284.2	284.2	-	-	-	-	Н
		91	7140106001217	473	feet	32	16	16	-	-	-	-	М
					TOTALS:	3579.8	1797.4	1683.4	15756	544	3008	0	
						N	Р	Sediment	TSS	BOD	COD	K	


Cost

- Weigh various components of management measures with cost
 - Goals
 - Load reductions
 - Cost Effective

Final Selection of BMP

- List of Potential BMP
- Watershed Committee and public input
- Consider previous components
- Prioritize BMP
- Other considerations
 - Structural vs. non-structural
 - Labor
 - Legal requirements/ ordinances
 - Other benefits

Agricultural Filters/Buffers Criteria

- Adjacent to waterbody
- Nutrient runoff reduction

Debris Removal Criteria

- Limiting flow
- Areas with existing drainage issues
- Organic vs. Synthetic
- Other considerations

Grassed Waterways Criteria

- Proximity to waterbody
- Priority given to areas exceeding five years of observed erosion
- Reduction of sediment
- Reduction of nutrient runoff

Streambank/Shoreline Stabilization Criteria

- Based on assessment
- High Level: 50%
- Medium Level- 25%
- None or Low- 10%
- Sediment reduction

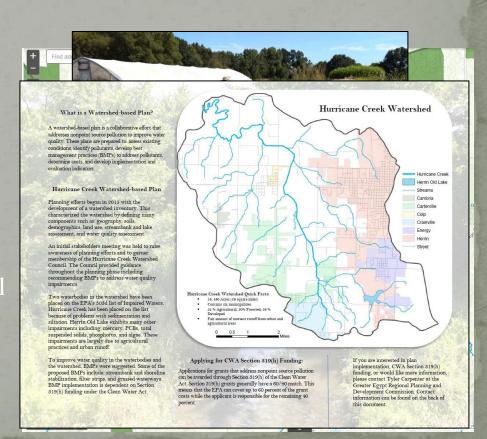
Riparian Buffer Criteria

- Based on assessment
- No tree cover
- Agricultural
- Intercepts nutrients

Management Measure Timeline

- Planning Member submit BMP proposal
- GE Staff
 - Model load reductions from Planning Committee
 - Map all management measures
 - Calculate loads for HUC 12 and HUC 14 levels
 - Site-specific measures for:
 - Streambank/ Shoreline Stabilization
 - Riparian Buffers
 - Filter Strips/ Field Borders
 - Grassed Waterways

BMP Worksheet


Western Crab Orchard Creek Watershed BMP Worksheet									
ВМР	Target Area (Be as specific as possible)	Amount (If applicable)	Unit (If applicab						
e.g. Grassed Waterway	Farmer Joe's Property, NE Lot	2.5	acres						
e.g. Permeable Pavement	Schnuck's Western Parking Lot	20,000	square fee						
e.g. Streambank Stabilization	Drury Creek - Adjacent to Makanda Boardwalk	600	feet						
			i.						
			0						
			16						
			i.						

- Please provide a list of BMP for plan
- BMP Proposals by next meeting (April-May 2021)
- Complete list should meet load reduction targets

Element E: Enhance Public Understanding Through Outreach Measures

- Public meetings
- Demonstration Sites
 - Green Earth Trail -Parrish Park
- Informational pamphlets regarding watershed planning efforts
 - Construct one for planning area
- Workshops
 - Stormwater Mana
 - Rain Garden
- Water Resources Surv
 - To be distributed
- Stormwater Managem
 - Can use to invent management mea

Element D: Technical and Financial Assistance

BMP funding and technical assistance

- BMP Funding sources
 - EPA 319 Grants
 - USDA- CRP, CREP, EQIP
 - DOT
 - Landowners, Municipalities

- BMP technical assistance
 - Contractors
 - Public Works
 - Landowners
 - Volunteers

ВМР	Cost	Unit	Technical Assistance	Funding Source(s)
Agricultural Filter Strip	\$0.00-\$300	acre	Landowner, public works, NRCS	IEPA 319 Grant, FSA CRP (No cost assumes using existing vegetation, if any)
Animal Waste Control (Ordinance)	\$0.00*	site	Public Works Departments	Municipality
Bioswale	\$42.00	foot	IDOT, contractor, municipality, public works	IEPA 319 Grant
Conservation Tillage	\$33.33	acre	Landowner, public works, NRCS	NRCS EQIP, FSA CRP
Cover Crops	\$66.67	acre	Landowner, public works, NRCS	NRCS EQIP, FSA CRP
Debris Removal	\$486.00	site	Volunteers, landowners, public works, contractor	Volunteers, landowners, public works, contractor
Detention Basin	\$0.74	cubic foot	Landowner, IDOT, contractor, municipality, public works	Landowners, municipality

Remaining elements of the plan:

- Element F- Implementation schedule of BMP
- Element G- Interim measurable milestones
- Element H- Benchmarks for load reduction targets
- Element I- Monitoring strategy

Element F: Implementation Schedule

• Should reflect BMP, educational component, and general goals of plan

	Phase I Phase II				Phase III					
Goal	Short-term (2 yr)		Mid-term (3-6 yr)			Long-term (7-10 yr)				
	1	2	3	4	5	6	7	8	9	10
Establish watershed action council	X									
Hold public meetings to gain input	Х	x	X							
Hold workshops to inform public on stormwater management		х		х		Х		X		
Continue researching funding and technical assistance	Х	Х	Х							
Select site-specific BMPs for preliminary designs	X	Х	X							
Submit grant applications based on BMPs in plan		x	X	х	Х	Х	Х	X		
Meet with landowners to review BMPs in plan		Х	X	х	Х	X				
Implement and execute BMPs			X	х	Х	Х	X	X	х	х
Monitor progress of implementation				х	х	Х	Х	X	х	х
Announce success of plan implementation					х	х	Х	Х	х	х
Evaluate Accomplishments					х	Х	Х	Х	Х	х

Element G: Interim Measurable Milestones

Interim Measurable Milestones										
Goal	Indicator	Short (2-year)	Mid (6-yr)	Long (10-yr)						
	Linear Feet of Streambank Stabilized	-	7,000	14,000						
	Agricultural Strips Created	-	6	12						
	Acres Converting to Conservation Tillage	-	70	140						
Address Impairments from Agricultural Practices/ Improve Water Quality	Acres to Implement Cover Crops	-	70	140						
	Grassed Waterways Created	-	5	10						
	Acres of No Mow Pastures	150	300	600						
	Riparian Buffers Created	-	1	2						
	Stream Channel Sediment Reduction Channels Created	-	2	5						
Improve Recreational Opportunities	Improve Ramp and Dock at Herrin Reservoir	-	-	1						

Element H: Benchmarks for load reduction targets

• Targets can be broken down into phases

	Benchmark Reduction Target									
Benchmark Period	Nitrogen (percent)			Phosphorus (lbs/yr)	Sediment (percent)	Sediment (tons/yr)				
2 Year (Phase I)	-	-	-	-	-	-				
6 Year (Phase II)	7	22,896.97	10	6,026.47	15	7,181.05				
10 Year (Phase III)	15	49,064.93	25	15,066.17	30	11,968.42				

Element I: Monitoring strategy

- How successful are BMP?
- Should use existing federal, state, and regional programs
- Can collect data from other agencies

Monitoring Component	Phase I Phase II		Phase III							
Monitoring Component	1	2	3	4	5	6	7	8	9	10
Ambient Lakes Monitoring Program	X					X				
Sediment Monitoring	X		Х		X		X		X	
Volunteer Lake Monitoring Program	X	X	Х	X	Х	X	X	X	X	Х
Watershed Basin Surveys		Х					X			

Needs from the Planning Committee

- BMP Worksheets
 - Turn in BMP proposals
 - Deadline By next meeting
- Ideas for education/outreach
 - Promote Watershed –based Plan
 - Activities
 - Items can be covered by grants

Meeting Schedule

MEETING 1	Introduction of Plan Elements and Watershed Inventory	November 19, 2020
MEETING 2	Best Management Practices and Remaining Plan Elements	February 23, 2021
MEETING 3	Prioritization of Best Management Practices	April, 2021
MEETING 4	Draft Plan Review	June, 2021
	Final Draft DUE	June 30, 2021

Questions/Comments

Tyler Carpenter
Greater Egypt
618-997-9351
tylercarpenter@greateregypt.org

