Western Crab Orchard Creek Watershed

Planning Committee Meeting 1

November 19, 2020 10:00 AM

<u>Agenda</u>

- I. Welcome and Introductions
- II. Review of Initial Stakeholders Meeting
- III. Nine Elements of a Watershed-based Plan
- IV. Synopsis of the Western Crab Orchard Creek
 - Watershed (Inventory)
- V. Concerns Within the Watershed
- VI. Preliminary Goals
- VII. Planning Committee Participation
- VIII. Meeting Schedule

Greater Egypt Regional Planning and Development Commission

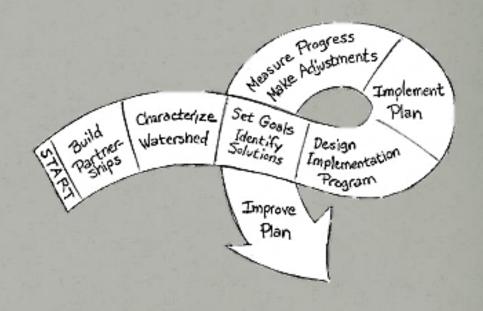
Tyler Carpenter
GIS & Environmental Planning Director

Ciara Nixon Planner

Noah Scalero Planner

Illinois Environmental Protection Agency

IEPA- 604(b) Program


- Water Quality Management Planning Grant
- Greater Egypt's 604(b) grants include:
 - watershed-based planning
 - coordinating the Volunteer Lake Monitoring Program (VLMP)
 - stormwater management educational materials

Initial Stakeholders Meeting Review August 27, 2020- Virtual

- Staff reviewed Inventory and Assessment/ Watershed-based Planning Components
 - What would the source of methoxychlor be?
 - "This chemical is now banned by EPA. It used to be used on crops as insecticide."
 - How does this tie into NARP planning?
 - "NARP and watershed planning have similar goals: reduce nutrients in watersheds and waterbodies. Planning group participants also qualify for NPDES requirements for NARP planning."
 - If we want to visit a location of concern on your maps, would someone be available to help us find the area on the ground?
 - "Let us know what site you would like to visit, and we can give you the information."

Watershed-based Plan

- Summarizes the overall condition of the watershed
- Provides a framework to restore water quality in impaired waters
- Protects water quality in other waters adversely affected or threatened by point source and non-point source pollution
- Allows for funding of water quality projects through EPA 319 Program

Point Source Pollution

- Domestic WTPs
- Industrial WTPs
- Combined Sewer Overflows
- Sanitary Sewer Overflows
- Mine Discharges
- Landfills

Nonpoint Source Pollution

- Urban Runoff
- Golf Courses
- Crop Production
- Livestock Grazing
- Erosion
- Failing Septic Systems

Western Crab Orchard Creek Watershed - NPDES Outfall Locations Clab Orchard Creek **NPDES Outfall and Status** NPDES Permit (No Violation) NPDES Permit (Violation) Expired NPDES Permit Creek Crab Orchard Creek Water Quality Monitoring Stations Watershed Planning Area I Subwatershed County Boundary Williamson Municipality Waterbodies Road Jackson Indian Creek-Drurg Creek Drury Creek Union

Why Develop a Watershed-based Plan?

Benefits can include:

- Reduction of pollution on surface and groundwater
- Restoration of water bodies to a healthy state
- Conservation of farmland
- Partnerships and collaboration among stakeholders

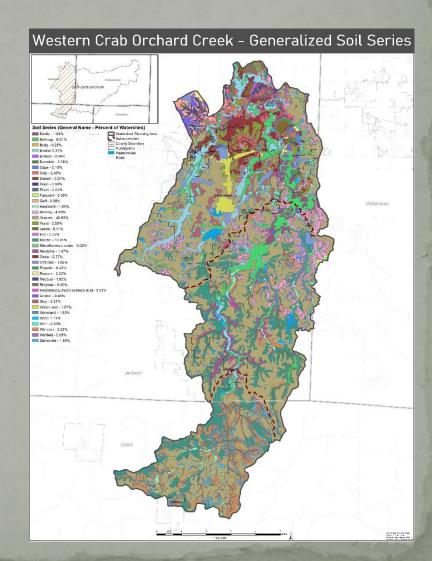
- Support of sustainable communities and economic growth
- Prevention and reduction of flooding
- Funding for various management measures
- Ten-year Plans

Collaboration of Stakeholders

- Watershed-based planning is a stakeholder-supported approach to improving and protecting water resources
- Stakeholders can include representatives from local government, conservation groups, and landowners
- The success of a watershed-based plan is dependent on the involvement of the stakeholders

Planning Efforts:

- 1. Identify causes and sources of water pollution and estimate existing pollutant loads.
- 2. Set water quality goals and load reduction targets to achieve those goals, and estimate load reductions expected from recommended management measures.
- 3. Describe the management measures needed to achieve load reduction targets.
- 4. Describe the technical and financial assistance (amount, costs, and sources) and relevant authorities needed to implement the plan.
- 5. Enhance public understanding through outreach measures.


Planning Efforts

- 6. Provide a schedule for implementing the management measures identified in the plan.
- 7. Identify interim, measurable milestones for determining whether management measures are being implemented on schedule.
- 8. Identify interim benchmarks to measure progress in meeting water quality goals and load reduction targets.
- 9. Describe a monitoring component.

1.) Identify causes and sources of water pollution and estimate existing pollutant loads

Watershed Resource Inventory

- Documentation of existing conditions in the watershed and its sub-watersheds
- Inventory of components such as: Geographic Boundaries, Land Use, and Drainage Assessment
- Field Assessment of erosion and riparian areas

2.) Set water quality goals and load reduction targets

Water Quality Goals could include:

- Achieve water quality standards and total maximum daily loads for specific pollutants
- Identify load reduction targets for specific pollutants
- Base nutrient reduction goals off of the IL Nutrient Loss Reduction Strategy

	Waterbody	Causes of Impairment(s)	Sources of Impairment(s)
The state of the s	Piles Fork	Alterarion in stream-side or littoral vegetative covers, Methoxychlor, Other flow regime alterations, Dissolved Oxygen	Highway/Road/Bridge Runoff (Non- construction related), Impacts from Hydrostructure Flow Regulations/modification, Streambank Modifications/destabilization, Urban Runoff/Storm Sewers, Upstream Impoundments
	Campus Lake	Mercury, Polychlorinated biphenyls, Total Suspended Solids(TSS), Phosphorus(Total)	Atmospheric Deposition-Toxics, Source Unknown, Other Spill Related Impacts, Waterfowl, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland
	Carbondale City Lake	Mercury, Total Suspended Solids(TSS), Phosphorus (Total)	Atmospheric deposition-Toxics, Source Unknown, Littoral/shore Area Modifications (Non-riverine), Municipal Point Source Discharges, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland

3.) Describe the management measures needed to achieve load reduction targets

Management measures could include:

• Identify best management practices (BMPs) to achieve water quality objectives

• Identify priority areas and practices

4.) Describe the technical and financial assistance and relevant authorities needed to implement the plan

- IEPA 319 Grants offer a 60 percent cost share
- Multiple other sources

Best Management Practice	Funding Sources	Notes/Cost Share Rates
Filter strips and riparian buffers Dry dams (WASCBs) Grass waterways Terraces Diversions Wetland creation Blind inlets and tile drainage management Nutrient management Cover crops	Illinois EPA – 319 program NRCS – EQIP program FSA – CRP program SWCD – CPP program USFWS – Acres for wildlife program IDNR/SWCD – CREP program IDNR – SWG program NRCS – WHIP program IDNR – Special Wildlife Funds Grants	CREP eligible acres must be in the 100-year floodplain and/or have cropped ground with an erodibility index of 8 or greater adjacent triparian zones; must have cropping history as defined by the USDA. SWG program requires 50% state match and must address goals/species outlined in the State of Illinois Comprehensive Wildlife Plan. NRCS, FSA, and SWCD programs generally provide 60% cost-share, however, some special programs and practices can provide to 90%. FSA, CREP and some NRCS programs also provide annual rental payments for taking ground out of production.
Streambank/lake shore stabilization and in- stream grade control or other grade control	Illinois EPA – 319 Program SWCD – SSRP program NRCS – EQIP program	Illinois EPA 319 offers 60% cost share SSRP offers 75% cost share EQIP offers 60% cost share
Wetland restoration and other habitat practices	Illinois EPA – 319 program NRCS – EQIP program NRCS – WRP program FSA – CRP program USFWS – Landowner Incentive Program IDNR/SWCD – CREP program IDNR – SWG program IDNR – Special Wildlife Funds Grants	WRP program – multiple/stringent eligibility requirements. NRCS, FSA, and SWCD programs provide a minimum of 60% cost-share, however, some special programs and practices can provide u to 90%. FSA, CREP and some NRCS programs also provide annual rental payments for taking ground out of production.
Livestock/equestrian practices, including fencing, stream crossings, pasture management, watering systems etc.	Illinois EPA – 319 program NRCS – EQIP program IDNR – Forestry Development Act funding (FLEP)	FLEP is applicable to livestock fencing for woodlands. Livestock management recommendations outlined in this report that includes wetland and/or habitat restoration can be funded by other programs such as the US F&W – Landowner Incentive Program EQIP typically provides 60% cost-share

5.) Enhance Public Understanding Through Outreach Measures

Measures could include:

- Public meetings
- Informational pamphlets regarding watershed planning efforts
- Workshops
 - Stormwater management
 - Agricultural activities

6.) Construct an Implementation Schedule for Measures in the Plan

Schedule should include:

Recommended BMP

- Information and Education components
- Monitoring component

						2000	S	200 10		
	Pha	ise I	Phase II				Phase III			
Goal	Short-term (2 yr)		Mid-term (3-6 yr)			Long-term (7-10 yr)				
	1	2	3	4	5	6	7	8	9	10
Establish watershed action council	х									
Hold public meetings to gain input	х	x	х							
Hold workshops to inform public on stormwater management		х		х		х		х		
Continue researching funding and technical assistance	Х	х	х							
Select site-specific BMPs for preliminary designs	Х	х	х							
Submit grant applications based on BMPs in plan		х	х	х	х	х	х	х		
Meet with landowners to review BMPs in plan		х	х	х	х	х				
Implement and execute BMPs			х	х	х	х	Х	х	Х	х
Monitor progress of implementation				х	х	х	х	х	х	х
Announce success of plan implementation					х	х	Х	х	Х	х
Evaluate Accomplishments					х	х	х	х	х	х

7.) Identify milestones to determine if management measures are being implemented on schedule

Interim Measurable Milestones									
Goal	Indicator	Short (2-year)	Mid (6-yr)	Long (10-yr)					
	Linear Feet of Streambank Stabilized	-	7,000	14,000					
	Agricultural Strips Created	-	6	12					
	Acres Converting to Conservation Tillage	-	70	140					
Address Impairments from	Acres to Implement Cover Crops	-	70	140					
Agricultural Practices/ Improve Water Quality	Grassed Waterways Created	-	5	10					
	Acres of No Mow Pastures	150	300	600					
	Riparian Buffers Created	1	1	2					
	Stream Channel Sediment Reduction Channels Created	-	2	5					
Improve Recreational Opportunities	Improve Ramp and Dock at Herrin Reservoir	-	-	1					

8.) Identify Interim Benchmarks to Measure Progress in Meeting Water Quality Goals

Benchmarks should include:

- Load Reduction Targets of:
 - Nitrogen
 - Phosphorus
 - Sediment
 - Other pollutants

ALCOHOLD THE RESERVE		Benchmark Reduction Target								
Benchmark Period	Nitrogen (percent)	Nitrogen (lbs/ yr)	Phosphorus (percent)	Phosphorus (lbs/yr)	Sediment (percent)	Sediment (tons/yr)				
2 Year (Phase I)	-	-	-	-	-	-				
6 Year (Phase II)	7	11,527	10	2,789	15	2,359				
10 Year (Phase III)	15	24,701	25	6,971	30	4,718				

9.) Describe a Monitoring Component

Recommends future assessment activities to be undertaken and can be designed to:

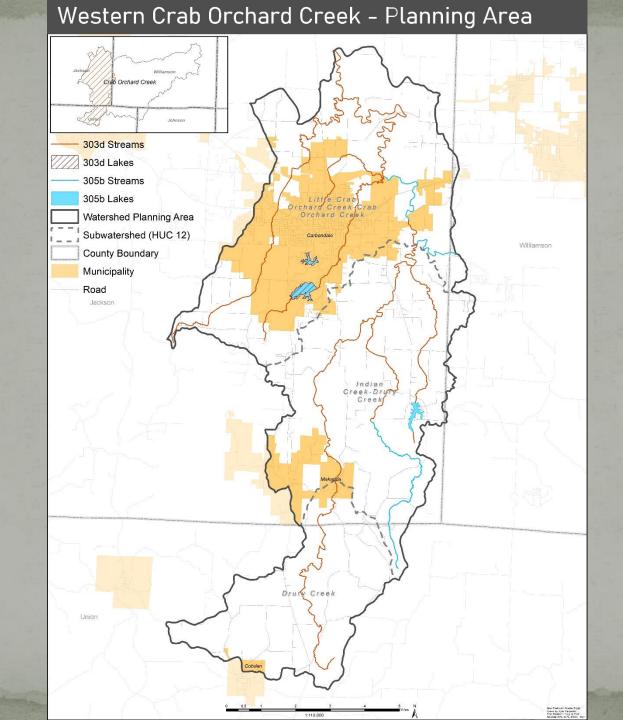
- Better identify potential causes and sources of pollution
- Assess BMP effectiveness
- Track and evaluate the effectiveness of plan implementation

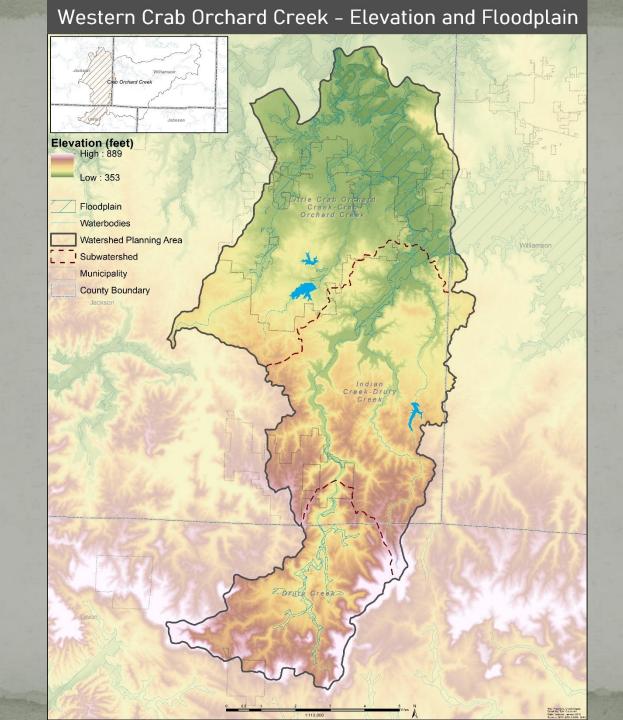
Monitoring Component	Phase I		Phase II				Phase III			
World of the Component	1	2	3	4	5	6	7	8	9	10
Ambient Lakes Monitoring Program	Х					x				
Sediment Monitoring	Х		х		х		х		х	
Volunteer Lake Monitoring Program	Х	х	х	х	х	х	х	х	Х	х
Watershed Basin Surveys		х					х		-	

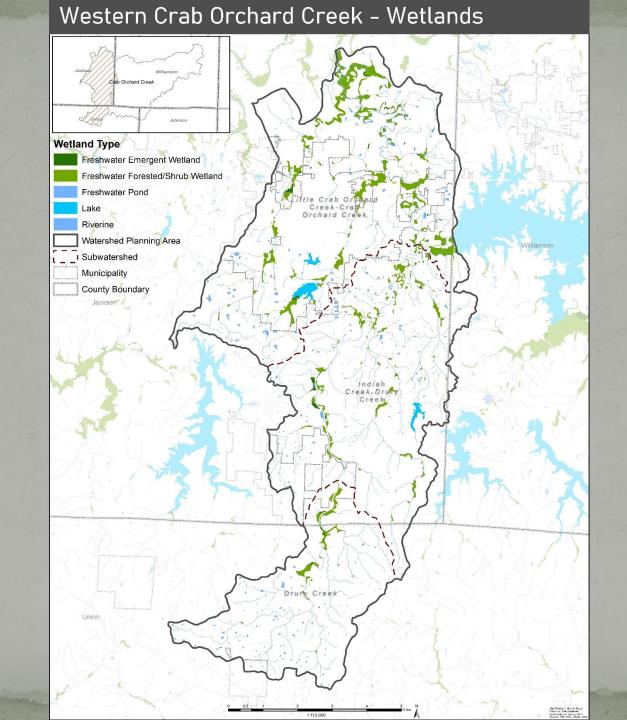
Hydrologic Unit Code (HUC)

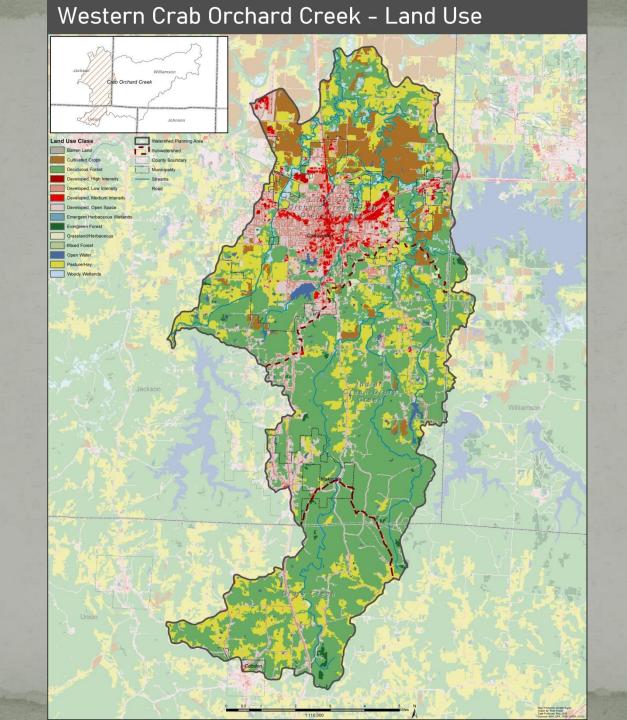
- Identify a hydrologic feature (watershed)
- Six levels of HUCs

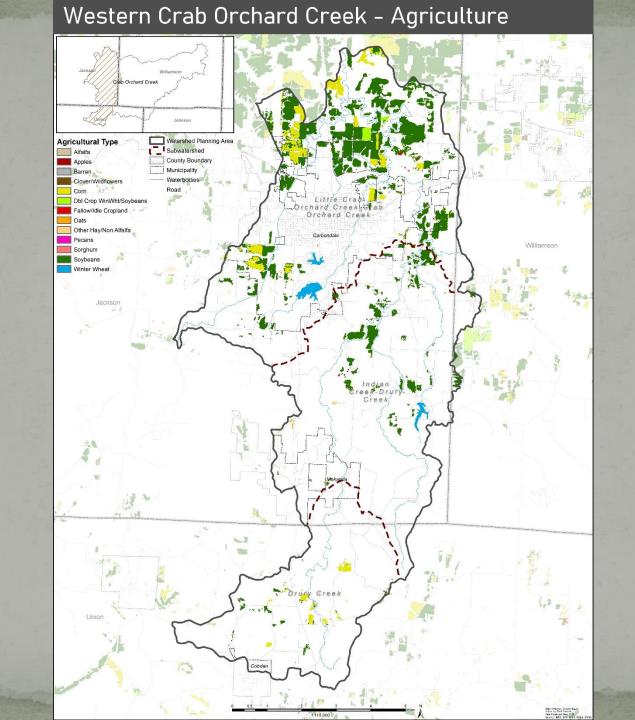
	Name	Level	Digits	Average size (square miles)	Number of HUCs (approximate)	Name	Code (HUC)
	Region	1 2 177,560 21 Upper Mississippi		07			
	Subregion	Subregion 2 4		16,800	222	Upper Mississippi-Kaskaskia-Meramec	0714
ĺ	Basin	3 6 10,596 352 Uppe		Upper Mississippi-Meramec	071401		
	Subbasin	ubbasin 4 8 700		2,149	Big Muddy	07140106	
	Watershed 5 10		10	227	22,000	Crab Orchard Creek	0714010608
Subwatershed		6	12	40	160,000	Little Crab Orchard Creek	071401060809

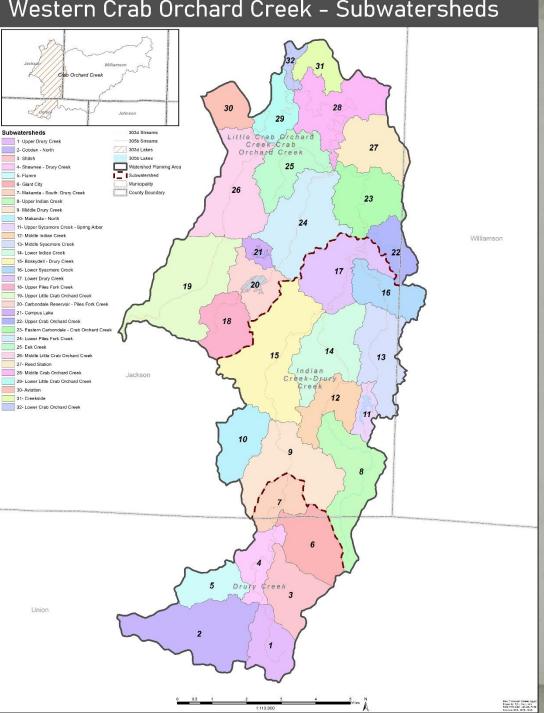

Western Crab Orchard Creek Watershed

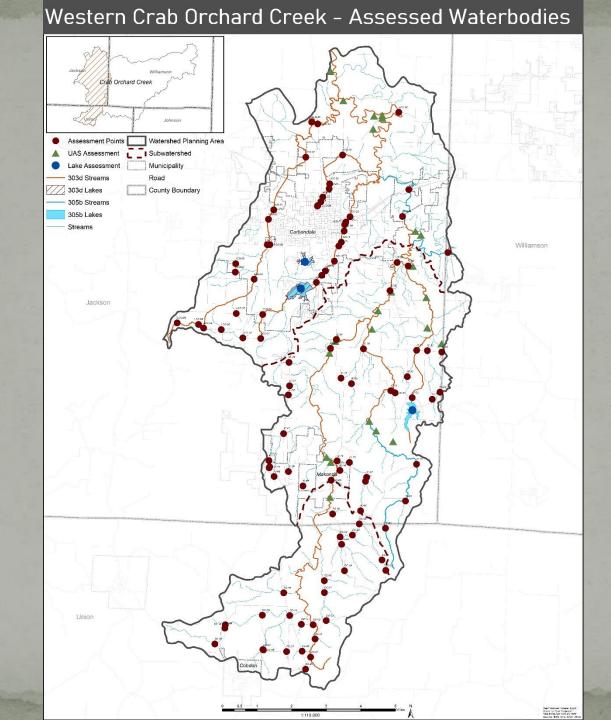

Quick facts:


- 56,533 acres, or 88 square miles
- Located in Jackson, Williamson and Union Counties
- Three separate HUC 12 watersheds:
 - Little Crab Orchard Creek
 - 24,539 ac
 - Indian Creek- Drury Creek
 - 20,018 ac
 - Drury Creek
 - 11,454 ac

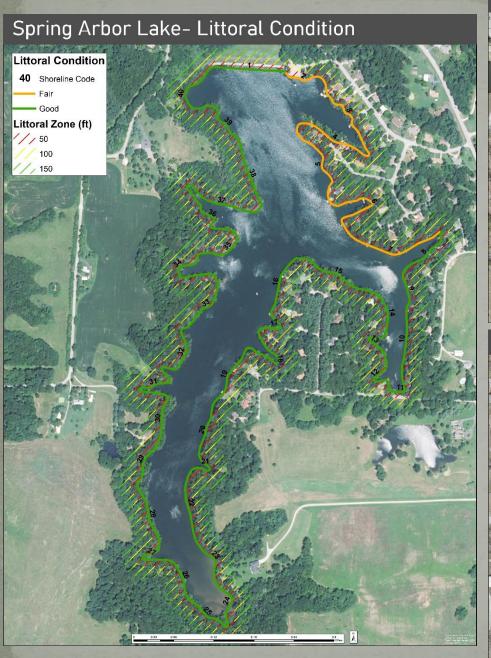

Municipalities include:

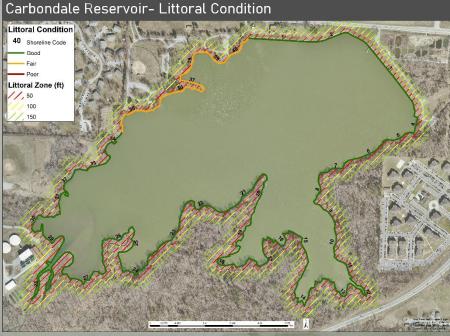

- Carbondale
- Makanda
- Cobden
- Detailed information can be found in the watershed inventory and assessment
 - Available on our site
 - Western Crab Orchard
 Creek Watershed
 Inventory and
 Assessment



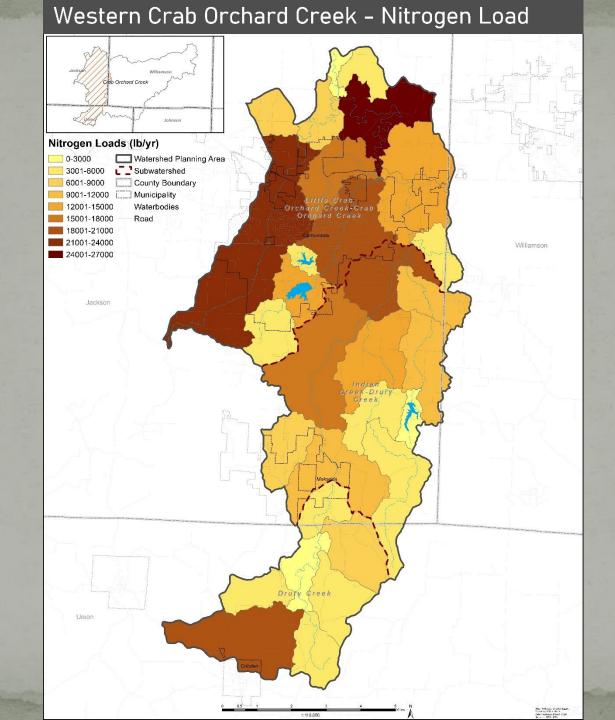


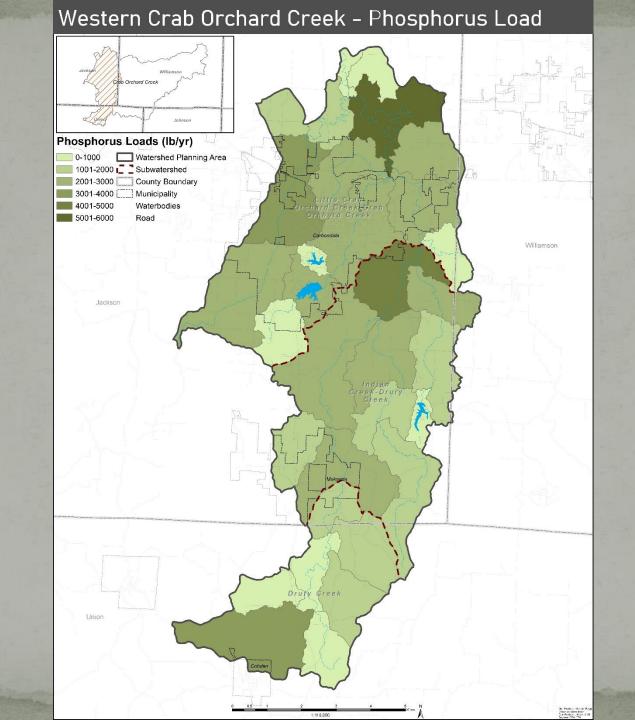
Western Crab Orchard Creek - Subwatersheds

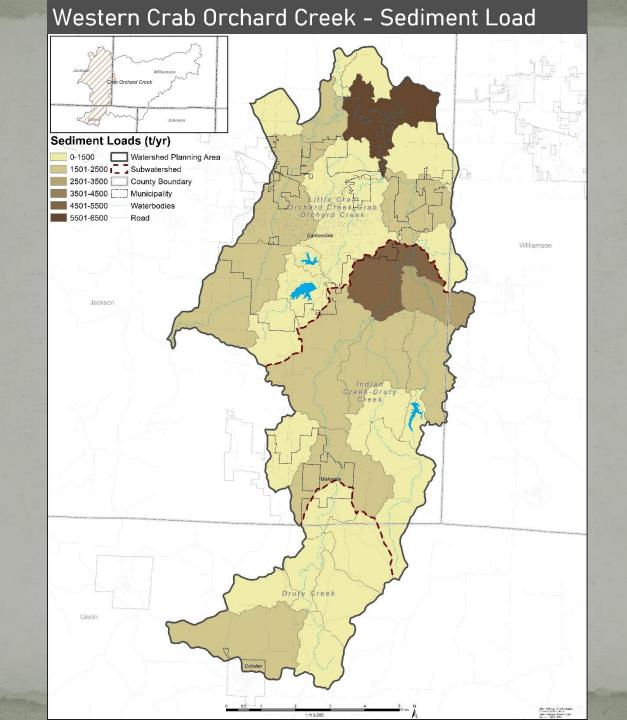



Western Crab Orchard Creek - Erosion Assessment Crab Orchard Creek **Extent of Erosion** Watershed Planning Area Subwatershed County Boundary Moderate Little Crab Orchard Creek Crab Orchard Creek Municipality Severe Waterbodies Williamson Jackson Union

Western Crab Orchard Creek - Riparian Assessment Clab Orchard Creek **Condition of Riparian Area** Watershed Planning Area Subwatershed County Boundary Little Crab Orchard Creek Crab Orchard Creek Municipality Road Waterbodies Williamson Jackson Union




Western Crab Orchard Creek - Channelization Assessment Crab Orchard Creek Degree of Channelization None Watershed Planning Area Subwatershed Low Moderate County Boundary Municipality Road Waterbodies Williamson Jackson Union


Estimated Pollutant Loads

• Spreadsheet Tool For Estimating Pollutant Loads (STEPL)

Source	N Load (lb/yr)	Percent of Total Load	P Load (lb/yr)	Percent of Total Load	Sediment Load (tons/yr)	Percent of Total Load
Urban	81,390.36	24.88%	12,527.90	20.79%	1,870.49	3.91%
Cropland	31,256.72	9.56%	9,009.52	14.95%	5,606.23	11.71%
Pastureland	70,201.03	21.46%	8,968.51	14.88%	3,733.30	7.80%
Forest and Grassland	8,619.41	2.64%	3,998.50	6.63%	845.65	1.77%
Groundwater	78,323.21	23.94%	3,696.34	6.13%	0.00	0.00%
Streambank	57,308.84	17.52%	22,063.91	36.61%	35,818.03	74.82%
Total	327,099.55		60,264.68		47,873.69	

Set Water Quality Goals and Load Reduction Targets

- Achieve water quality standards and total maximum daily loads for specific pollutants
- Base nutrient reduction goals off of the IL Nutrient Loss Reduction Strategy

 Identify load reduction targets for specific nutrients/ pollutants

Waterbody	Assessment Unit ID	Size	Causes of Impairment(s)	Sources of Impairment(s)
Piles Fork	IL_NDB-03	7.2	Alteration in stream- side or littoral vegetative covers, Methoxychlor, Other flow regime alterations, Dissolved Oxygen	Highway/Road/Bridge Runoff (Non-construction related), Impacts from Hydrostructure Flow Regulations/modification, Streambank Modifications/destabilization, Urban Runoff/Storm Sewers, Upstream Impoundments
Campus Lake	IL_RNZH	41.2 ac	Mercury, Polychlorinated biphenyls, Total Suspended Solids(TSS), Phosphorus(Total)	Atmospheric Deposition-Toxics, Source Unknown, Other Spill Related Impacts, Waterfowl, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland

IL Nutrient Loss Reduction Strategy (ILNLRS)

- Collaborative effort between IEPA, IL Dept. of Agriculture, and the IL NLRS Policy Working Group and subcommittees
- Develop strategies and promote best management practices (BMP) for nutrient runoff
- Goals include: 25% reduction in phosphorus load (2025)

15% reduction in nitrate-nitrogen load (2025)

Eventual goal is 45% for both nutrients

Load Reduction Targets

Watershed	SMU ID	Nitrogen (percent of total)	Nitrogen Load Reduction Target (lbs)	Phosphorus	Phosphorus Load Reduction Target (lbs)	Sediment (percent of total)	Sediment Load Reduction Target (tons)
Western Crab Orchard Creek	-	0.15	49,064.93	0.25	15,066.17	0.25	11,968.42
Subwatershed Load Reduction Targets							
Drury Creek	1.00	0.15	7,204.97	0.15	2,214.49	0.15	1,766.64
Indian Creek- Drury Creek	2.00	0.30	14,495.91	0.34	5,061.37	0.41	4,877.80
Little Crab Orchard Creek	3.00	0.56	27,364.06	0.52	7,790.31	0.44	5,323.98
TOTAL			49,064.93		15,066.17		11,968.42

Concerns Within the Watershed

EPA 303d List of Impaired Waters by Subwatershed:

Drury Creek Subwatershed:

Drury Creek

Indian Creek Subwatershed:

- Indian Creek
- Sycamore Creek

Little Crab Orchard Creek Subwatershed:

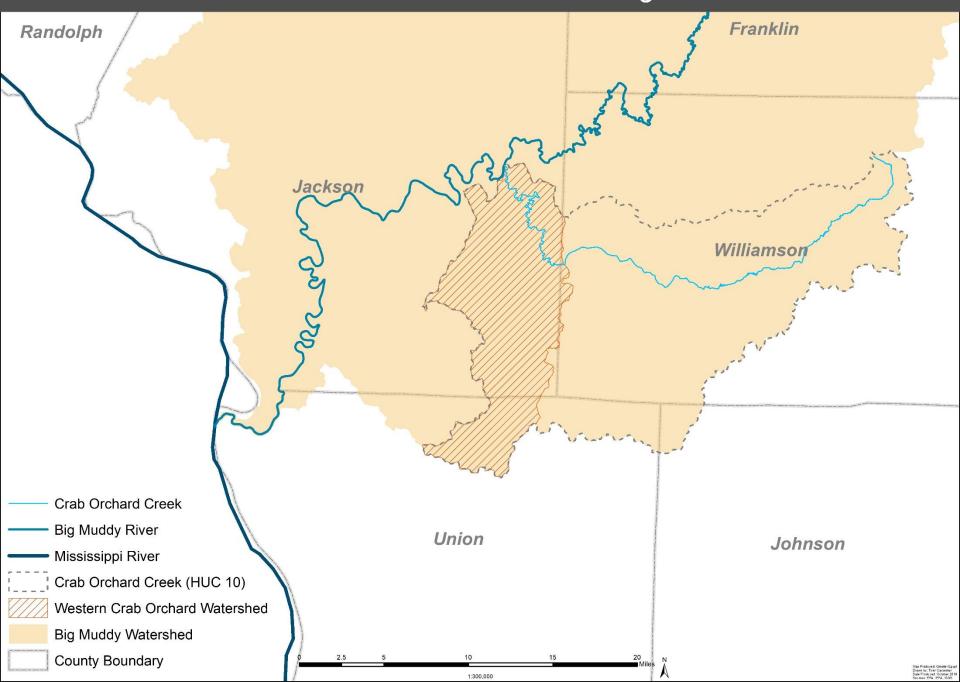
- Big Muddy River
- Crab Orchard Creek
- Eek Creek
- Little Crab Orchard Creek West
- Piles Fork Creek
- Carbondale City Lake
- Campus Lake

Crab Orchard Creek Subwatershed 303d Information

Waterbody	Assessment Unit ID	Causes of Impairment(s)	Sources of Impairment(s)
Big Muddy River	IL_N-16	Dissolved Oxygen, Sedimentation/Siltation, Mercury	Non-irrigated Crop Production, Natural Sources, Atmospheric Deposition- Toxics, Source Unknown
Crab Orchard Creek	IL-ND-01	Mercury	Atmospheric Deposition-Toxics, Source Unknown
Crab Orchard Creek	IL-ND-02	Manganese, Other flow regime alterations, Dissolved Oxygen	Source Unknown, Impacts from Hydrostructure Flow Regulations/modification, Upstream Impoundments
Crab Orchard Creek	IL-ND-11	Dissolved Oxygen, Cause Unknown	Source Unknown
Eek Creek	IL_NDBA-01	Alteration in stream-side or littoral vegetative covers, Dissolved Oxygen, Water Temperature, Loss of Instream Cover	Channelization, Industrial Land Treatment, Loss of Riparian Habitat, Rcra Hazardous Waste Sites, Crop Production (Crop Land or Dry Land), Agriculture, Habitat Modification- other than Hydromodification
Little Crab Orchard Creek- West	IL_NDA-01	Alteration in stream-side or littoral vegetative covers, Methoxychlor, Dissolved Oxygen	Loss of Riparian Habitat, Streambank Modifications/destabilization, Crop Production (Crop Land or Dry Land), Urban Runoff/Storm Sewers, Livestock (Grazing or Feeding Operations)
Piles Fork	IL_NDB-03	Alteration in stream-side or littoral vegetative covers, Methoxychlor, Other flow regime alterations, Dissolved Oxygen	Highway/Road/Bridge Runoff (Non-construction related), Impacts from Hydrostructure Flow Regulations/modification, Streambank Modifications/destabilization, Urban Runoff/Storm Sewers, Upstream Impoundments
Campus Lake	IL_RNZH	Mercury, Polychlorinated biphenyls, Total Suspended Solids(TSS), Phosphorus(Total)	Atmospheric Deposition-Toxics, Source Unknown, Other Spill Related Impacts, Waterfowl, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland
Carbondale City Lake	IL_RNI	Mercury, Total Suspended Solids(TSS), Phosphorus (Total)	Atmospheric deposition-Toxics, Source Unknown, Littoral/shore Area Modifications (Non-riverine), Municipal Point Source Discharges, Urban Runoff/Storm Sewers, Runoff from Forest/Grassland/Parkland

Indian Creek-Drury Creek Subwatershed 303d Information

Waterbody	Assessment Unit ID	Causes of Impairment(s)	Sources of Impairment(s)
Drury Creek	IL_NDC-02	Dissolved Oxygen	Acid Mine Drainage, Highway/Road/Bridge Runoff(Non- construction Related), Impacts from Abandoned Mine Lands (Inactive), Streambank Modifications/destabilization, Crop Production (Crop Land or Dry Land), Agriculture
Indian Creek	IL_NDCB-01	Alteration in stream-side or littoral vegetative covers, Low flow alterations, Dissolved Oxygen, Changes in Stream Depth and Velocity Patterns	Streambank Modifications/destabilization, Habitat Modicication-other than Hydromodification, Loss of Riparian Habitat, Crop Production (Crop Land or Dry Land), Agriculture
Sycamore Creek	IL_NDCA	Dissolved Oxygen, pH	Acid Mine Drainage, Impacts from Abandoned Mine Lands (Inactive), Loss of Riparian Habitat, Crop Production (Crop Land or Dry Land), Agriculture


Drury Creek Subwatershed 303d Information

	Waterbody	Assessment Unit ID	Causes of Impairment(s)	Sources of Impairment(s)
A STATE OF THE PARTY OF THE PAR	Drury Creek	IL-NDC-01	Alteration in stream-side or littoral vegetative covers, Dissolved Oxygen	Loss of Riparian Habitat, Source Unknown

Crab Orchard Watershed TMDL Report (2008)

- Collaboration between agencies and citizens
- Goals focused on:
 - Water quality of impaired waterbodies
 - Identifying potential sources of pollutants
 - Determining loading capacity of pollutants
 - Reducing exceeding maximum daily loads
- Solutions proposed were various TMDL approaches
 - If these are still relevant, they could be included in this plan

Western Crab Orchard Creek Watershed - Regional Location

Preliminary Goals

- Erosion along streambank/shoreline
- Address 303(d) Impairments:
 - Dissolved Oxygen
 - pH
 - Sedimentation/Siltation
 - Mercury
 - Manganese
 - Water Temperature
 - Methoxychlor
 - TSS
 - Phosphorus
 - Polychlorinated biphenyls

- Address runoff from urban/agricultural areas
- Encourage BMP for agricultural areas
- Increase public involvement

• Other goals?

Needs from the Planning Committee

- Attend future planning meetings
- Propose Best Management Practices (BMP)
- Give knowledge of watershed issues and concerns
- Guidance on education/outreach component of plan
- Technical support (if available)
- Review work of the Western Crab Orchard Creek Watershed-based Plan

Meeting Schedule

MEETING 1	Introduction of Plan Elements and Watershed Inventory	November, 2020
MEETING 2	Best Management Practices and Remaining Plan Elements	January, 2021
MEETING 3	Prioritization of Best Management Practices	March, 2021
MEETING 4	Draft Plan Review	May 1, 2021
	Final Draft DUE	June 30, 2021

Questions/Comments

Tyler Carpenter
Greater Egypt
618-997-9351
tylercarpenter@greateregypt.org

