Lake Creek Watershed Management Planning Meeting 4

March 29, 2018 10:00 AM

Agenda

- I. Welcome and Introductions
- II. Review of Planning Meetings
- III. Pollutant Load Reduction Targets
- IV. Element C: BMP for Load Reductions
- V. Element D: Technical and Financial Assistance
- VI. Element E: Education/ Outreach
- VII. Elements F-I: Implementation and Monitoring Strategy
- VIII. Projected Meeting Schedule

II. Review of Planning Meetings

Williamson County Farm Bureau: 2/7/2018

- Review of Plan Elements
- Focus on proposing BMP
- Follow-up with individuals interested in proposing BMP

II. Review of Planning Meetings

Johnston City Officials: 2/27/2018

- Review of Plan Elements
- Focus on proposing BMP
- Main concern was drainage/flooding around Johnston City
 - Street Department labeling critical areas around town on map
 - Will use this to propose BMP in Johnston City
 - Took small tour of property east of Water Avenue (poor drainage)

III. Pollutant Load Reduction Targets

• Watershed-wide Pollutant Loading

Source	N Load (lb/yr)	Percent of Total Load	P Load (lb/yr)	Percent of Total Load	Sediment Load (tons/yr)	Percent of Total Load
Urban	27505.85	16.70%	4251.89	15.25%	631.37	4.01%
Cropland	25810.14	15.67%	7430.95	26.65%	4617.44	29.36%
Pastureland & Grassland	75732.41	45.99%	9077.97	32.55%	3425.45	21.78%
Forest	4323.70	2.63%	2039.25	7.31%	333.14	2.12%
Groundwater	20554.50	12.48%	945.82	3.39%	0.00	0.00%
Streambank/Shoreline	10751.08	6.53%	4139.16	14.84%	6719.42	42.73%
Totals	164677.68		27885.06		15726.82	

III. Pollutant Load Reduction Targets

• Subwatershed Loading

Sub-watershed	SMU ID	Size (acres)	N Percent of Total Load	P Percent of Total Load	Sediment Percent of Total Load
Upper Lake Creek	1	1459.32	4.93%	4.63%	5.07%
City Lake	2	1817.87	7.70%	6.67%	6.34%
Corinth	3	1404.85	5.99%	5.99%	8.24%
Fowler School	4	992.40	2.61%	2.80%	2.92%
Heartland	5	2297.85	9.55%	8.50%	8.54%
Whiteash Branch	6	743.14	3.59%	3.87%	4.17%
Arrowhead	7	2109.54	8.00%	7.21%	5.61%
Whiteash	8	3211.59	15.00%	13.36%	11.35%
Beaver Creek	9	366.26	1.81%	1.48%	1.31%
Johnston City	10	1732.20	8.53%	8.79%	7.62%
Bear Creek	11	2760.84	12.25%	11.35%	11.24%
Champaign	12	833.81	5.46%	6.38%	6.61%
Collins	13	755.07	4.88%	6.41%	7.41%
Lower Lake Creek	14	1298.19	9.69%	12.56%	13.59%

IL Nutrient Loss Reduction Strategy (NLRS)

- Collaborative effort between IEPA, IL Dept. of Agriculture, and the IL NLRS Policy Working Group and subcommittees
- Develop strategies and promote best management practices (BMP) for nutrient runoff
- Goals include: 25% reduction in phosphorus load (2025)

15% reduction in nitrate-nitrogen load (2025)

Eventual goal is 45% for both nutrients

III. Pollutant Load Reduction Targets

• Pollutant Load Reduction Targets

Watershed	Nitrogen Load Reduction Target (lbs)	Nitrogen (Percent Reduction)	Phosphorus Load Reduction Target (Ibs)	Phosphorus (Percent Reduction)	Sediment Load Reduction Target (tons)	Sediment (Percent Reduction)
Lake Creek	24701.65	15.00%	6971.26	25.00%	4718.04	30.00%
		Sub-waters	hed Load Reduction	on Targets		
SMU 1	1218.47	4.93%	322.60	4.63%	239.13	5.07%
SMU 2	1902.02	7.70%	465.00	6.67%	299.22	6.34%
SMU 3	1480.21	5.99%	417.86	5.99%	388.58	8.24%
SMU 4	645.88	2.61%	194.88	2.80%	137.85	2.92%
SMU 5	2359.57	9.55%	592.50	8.50%	402.77	8.54%
SMU 6	887.44	3.59%	270.08	3.87%	196.64	4.17%
SMU 7	1975.61	8.00%	502.37	7.21%	264.70	5.61%
SMU 8	3705.19	15.00%	931.64	13.36%	535.29	11.35%
SMU 9	446.67	1.81%	103.50	1.48%	61.62	1.31%
SMU 10	2108.26	8.53%	612.60	8.79%	359.31	7.62%
SMU 11	3026.11	12.25%	791.25	11.35%	530.08	11.24%
SMU 12	1347.55	5.46%	445.04	6.38%	311.81	6.61%
SMU 13	1204.22	4.88%	446.63	6.41%	349.76	7.41%
SMU 14	2394.45	9.69%	875.32	12.56%	641.29	13.59%
TOTAL	24701.65		6971.26		4718.04	

BMP in plan should address:

- Impairments to waterbodies through nonpoint sources
- Drainage/Flooding issues
- Possible recreation
- Site-specific areas and watershed-wide practices

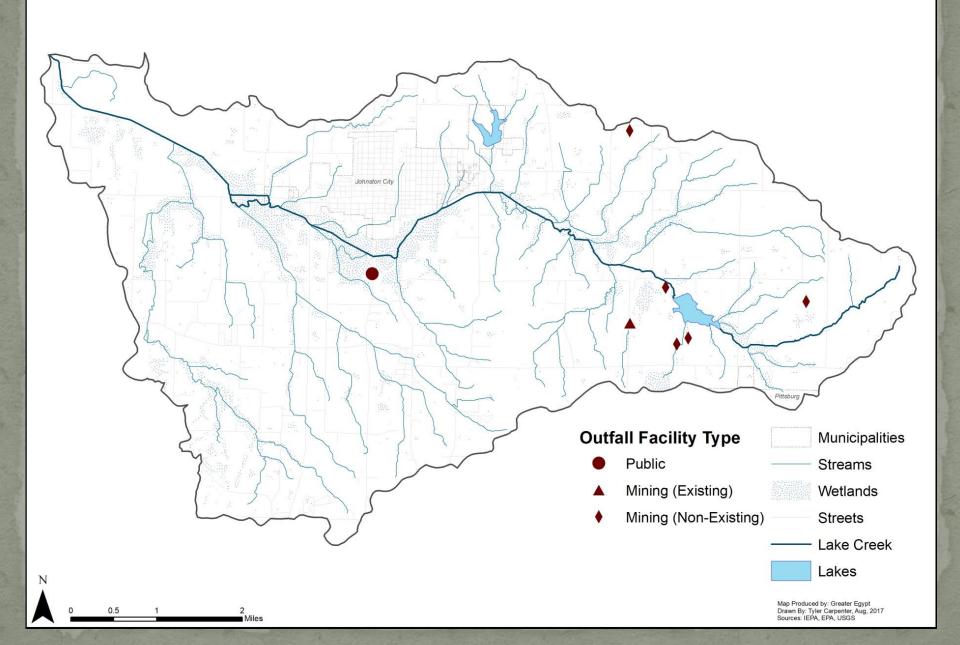
Impairments:

- Beaver Creek: Manganese, Changes in steam depth, loss of instream cover
- Lake Creek: Dissolved Oxygen, Phosphorus, Changes in Stream depth

- Arrowhead Lake: Phosphorus
- Johnston City Lake: Aquatic Algae, Phosphorus, Total Suspended Solids

BMP Suggestions for Specific Impaired Streams:

	Waterbody	Causes of Impairment(s)	Sources of Impairment(s)	BMP Suggestions
	Lake Creek	Dissolved Oxygen	Municipal Point Source Discharges	Review NPDES Permits for discharges (Johnston City) Inspect discharge locations
		Phosphorus	Crop production/ Agriculture	Agricultural Filters/buffers, conservation practices, enrollment in conservation programs, nutrient management, other BMP
Mary Mary	Lake Creek	·	Urban Runoff/Storm Sewers	Vegetative buffers/filters, permeable pavement, disconnects from storm sewers, other urban BMP
		Changes in Stream depth and Velocity Patterns	I Inknown Sources	Streambank Stabilization, other "Slow the flow" measures, others?


Waterbody	Causes of Impairment(s)	Sources of Impairment(s)	BMP Suggestions
	Manganese	Loss of Riparian Habitat, Municipal Point Source Discharges	Review NPDES Permits for discharges (Johnston City) Inspect discharge locations Riparian Corridor, Riparian buffer
Beaver Creek	Changes in Stream depth and velocity	Crop production/ Agriculture Urban Runoff/Storm Sewers	Agricultural Filters/buffers, conservation practices, enrollment in conservation programs, streambank stabilization, nutrient management, other BMP
	patterns		Vegetative buffers/filters, permeable pavement, disconnects from storm sewers, other urban BMP
	Loss of instream cover	Runoff from Forest/Grassland/Parkland	Slow the flow measures, others?

BMP Suggestions for Specific Impaired Lakes:

v	Vaterbody	Causes of Impairment(s)	Sources of Impairment(s)	BMP Suggestions
4	Arrowhead Lake	Phosphorus	Runoff from Forest/Grassland/Parkland	Conservation buffers/filters, permeable pavement, shoreline stabilization

Waterbody	Causes of Impairment(s)	Sources of Impairment(s)	BMP Suggestions			
Johnston City Joko	Aquatic Algae Phosphorus	1	Conservation buffers/filters, permeable pavement, shoreline stabilization			
Johnston City Lake	Total Suspended Solids	Littoral/ Shore Area Modifications	Return old dock to natural state, shoreline stabilization			

Lake Creek Watershed- NPDES Outfall Locations

Greater Egypt BMP Recommendations

- Agricultural Filters/ Buffers
- Debris Removal
- Grassed Waterways
- Riparian Buffer
- Streambank/Shoreline Stabilization
- Urban Filter Strips/Buffers

Agricultural Filters/Buffers Criteria

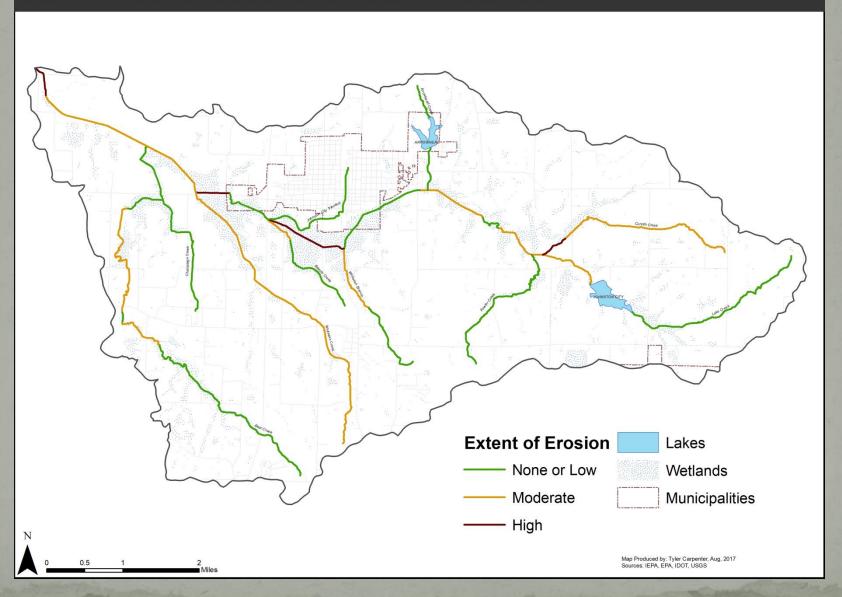
- Adjacent to waterbody
- No existing buffer
- High Priority- <25 ft
- Mid Priority- <50 ft
- Low Priority- >50 ft
- Nutrient runoff reduction

Debris Removal Criteria

- Limiting flow
- Areas with existing drainage issues
- Organic vs. Synthetic
- Other considerations

IV. Element C: Best Management Practices **Grassed Waterways Criteria**

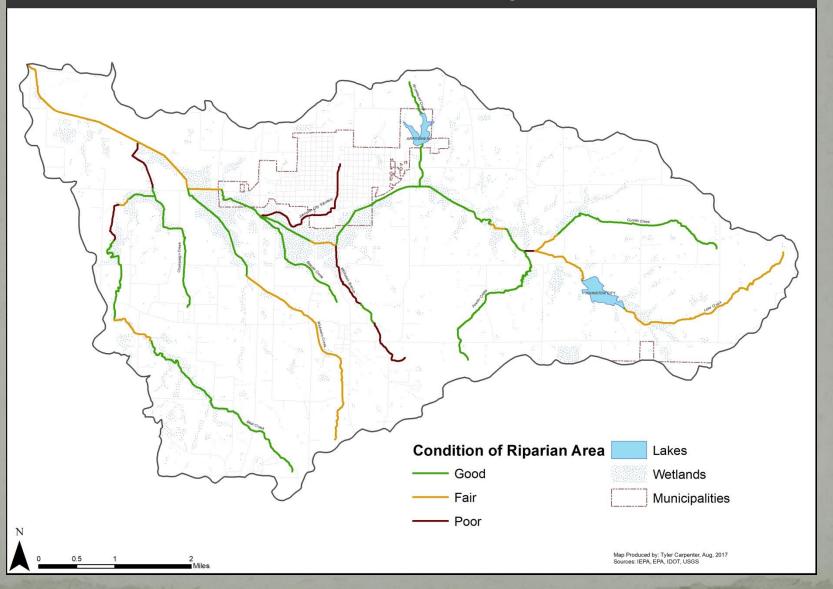
- Proximity to waterbody
- Level of erosion
- Soils
- Priority given to areas exceeding five years of observed erosion
- Reduction of sediment
- Possible reduction of nutrient runoff


Streambank/Shoreline Stabilization Criteria

- Based on assessment
- High Priority- High Level
- Mid Priority- Medium Level
- Low Priority- None or Low
- Ease of operation
- Sediment reduction

Assessment

Lake Creek Watershed - Extent of Erosion


Riparian Buffer Criteria

- Based on assessment
- No tree cover
- Linked to other areas with canopy
- Higher concentrations of dissolved oxygen
- Stream crossings?
- Intercepts nutrients
- Natural bank stabilization

Assessment

Lake Creek Watershed - Condition of Riparian Area

Greater Egypt BMP Recommendations

- Recommendations to be broken into site-specific and watershed-wide categories
- Site-specific areas will address the BMP previously mentioned
- Watershed-wide practices can be more general (examples)
 - Eight acres of permeable pavement
 - 400 acres of farmland to implement cover crops
 - Recommendations of ordinances pertaining to water quality, stormwater
 - Educational BMP

Next Steps for Greater Egypt BMP Recommendations

- Finalize list of BMP and create priority list
- Create nutrient load reduction models for each BMP (EPA Region 5 Model)
- Look in to other BMP: stream crossings (animal, mechanical), urban BMP from drainage map of Johnston City (from City officials)

IV. Element C: Best Management Practices Recommendations from Council

1000	Area Type	BMP Suggestions from Council	Outcome
1	Agricultural (Cropland, Pasture/Hay)		
The same of the same of	Urban (Municipal, Roads)		
	Forested		
	Other		

V. Technical and Financial Assistance

BMP funding and technical assistance

- BMP Funding sources
 - EPA 319 Grants
 - USDA- CRP, CREP, EQIP
 - DOT
 - Landowners, Municipalities
- BMP technical assistance
 - Contractors
 - Public Works
 - Landowners
 - Volunteers

VI. Outreach/ Public Involvement

Outreach/Public Involvement current list of measures includes:

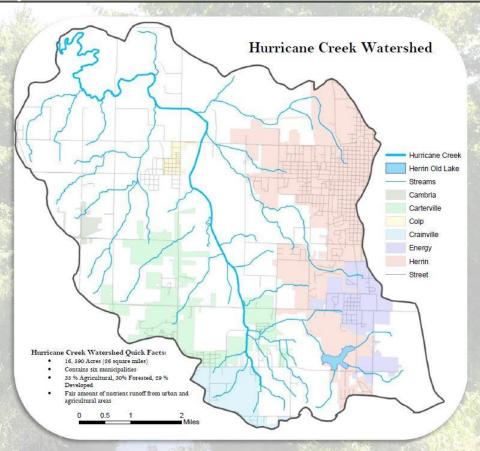
- Establish a Lake Creek Watershed Action Committee
 - Will oversee plan implementation and monitoring
- Hold public meetings
 - Keep the public informed throughout plan implementation
- Distribute flyers or brochures regarding watershed management efforts
- Enlist volunteers for litter cleanup days
 - Could be conservation groups, 4H, Boy/Girl Scouts or other local groups
- Hold workshops for watershed activities
 - Stormwater management
 - Agricultural workshops

VI. Outreach/ Public Involvement

Informational Pamphlets

What is a Watershed-based Plan?

A watershed-based plan is a collaborative effort that addresses nonpoint source pollution to improve water quality. These plans are prepared to assess existing conditions, identify pollutants, develop best management practices (BMPs) to address pollutants, determine costs, and develop implementation and evaluation indicators


Hurricane Creek Watershed-based Plan

Planning efforts began in 2015 with the development of a watershed inventory. This characterized the watershed by defining many components such as: geography, soils, demographics, land use, streambank and lake assessment, and water quality assessment.

An initial stakeholders meeting was held to raise awareness of planning efforts and to garner membership of the Hurricane Creek Watershed Council. The Council provided guidance throughout the planning phase including recommending BMPs to address water quality impairments.

Two waterbodies in the watershed have been placed on the EPA's 303d list of Impaired Waters. Hurricane Creek has been placed on the list because of problems with sedimentation and siltation. Herrin Old Lake exhibits many other impairments including: mercury, PCBs, total suspended solids, phosphorus, and algae. These impairments are largely due to agricultural practices and urban runoff.

To improve water quality in the waterbodies and the watershed, BMPs were suggested. Some of the proposed BMPs include: streambank and shoreline stabilization, filter strips, and grassed waterways. BMP implementation is dependent on Section 319(h) funding under the Clean Water Act.

Applying for CWA Section 319(h) Funding:

Applications for grants that address nonpoint source pollution can be awarded through Section 319(h) of the Clean Water Act. Section 319(h) grants generally have a 60/40 match. This means that the EPA can cover up to 60 percent of the grant costs while the applicant is responsible for the remaining 40 percent.

If you are interested in plan implementation, CWA Section 319(h) funding, or would like more information, please contact Tyler Carpenter at the Greater Egypt Regional Planning and Development Commission. Contact information can be found on the back of this document.

Remaining elements of the plan:

- Element F- Implementation schedule of BMP
- Element G- Interim measurable milestones
- Element H- Benchmarks for load reduction targets
- Element I- Monitoring strategy

Element F: Implementation Schedule

• Should reflect BMP, educational component, and general goals of plan

_	Pha	ise I		Pha	se II			Pha	se III	
Target	Short-term (2 yr)		Mid-term (3-6 yr)				Long-term (7-10 yr)			
	1	2	3	4	5	6	7	8	9	10
Establish watershed action committee	Х									
Hold public meetings to gain input	x	x	X	X	X	X				
Post watersheds sign for public awareness and BMP implementation	Х	x	X	х	Х	х	х	х	Х	х
Create a website for watershed activities and key dates		Х								
Enlist volunteers for litter cleanup days	x	x	X	X	X	X	X	X	X	x
Distribute flyers for stormwater management and similar topics	Х		X		Х		Х		Х	
Hold workshops to inform public on stormwater management		X		х		x		X		
Continue researching funding and technical assistance	X	X	X							
Select site-specific BMPs for preliminary design	Х	x	X							

Element G: Interim Measurable Milestones

	Interim Measurable Milestones										
Goal	Indicator	Short (2-year)	Mid (6-yr)	Long (10-yr)							
	Educational Brochures for Fertilizer Use	500	1000	1500							
	Educational Brochures for Stormwater Management	500	1000	1500							
Outreach and Education	Lakes in Volunteer Lake Monitoring Program	1	3	-							
Outreach and Education	Number of Litter Cleanup Days	3	6	9							
	Public Meetings Held	4	10	14							
	Stormwater Management Workshops Held	1	3	5							
Poduce/Mitigate Fleeding	Detention Basins Installed	-	1	2							
Reduce/Mitigate Flooding	Linear Feet of Stream Channel Debris Removal	150	300	600							

Element H: Benchmarks for load reduction targets

• Targets can be broken down into phases

		Benchmark Reduction Target										
Benchmark Period	Nitrogen (percent)			Phosphorus (lbs/yr)	Sediment (percent)	Sediment (tons/yr)						
2 Year (Phase I)	(Phase I) -		-	-	-	-						
6 Year (Phase II)	6	8897	20	5497	20	3159						
10 Year (Phase III)	hase III) 15 22241		40	10995	45	7108						

Element I: Monitoring strategy

- How successful are BMP?
- Should use existing federal, state, and regional programs
- Can collect data from other agencies

Monitoring Component	Pha	ise I	Phase II				Phase III			
Monitoring Component	1	2	3	4	5	6	7	8	9	10
Ambient Lakes Monitoring Program	X					X				
Sediment Monitoring	X		X		X		X		X	
Volunteer Lake Monitoring Program	X	Х	X	X	X	X	Х	X	X	х
Watershed Basin Surveys		X					X			

VIII. Projected Meeting Schedule & Important Dates

- Quarterly meeting in June
- September 1, 2018: Draft Due
 - Will likely have final meeting before or after draft submission
- October 1,2018: Final Draft
- Approval process

Questions/Comments

Tyler Carpenter
Greater Egypt
618-997-9351
tylercarpenter@greateregypt.org

